Skip to content

Asthma Module

SHARE VIA:

TopicAsthma
AuthorMiriam Saey Al-Rifai
DurationUp to 2 hours
Equipment requiredNone
  • Basics (10 mins)
  • Main session: (2 x 15 minute) case discussions covering the key points and evidence
  • Advanced session: (2 x 20 minutes) case discussions covering grey areas, diagnostic dilemmas; advanced management and escalation
  • Sim scenario (30-60 mins)
  • Quiz (10 mins)
  • Infographic sharing (5 mins): 5 take home learning points

We also recommend printing/sharing a copy of your local guideline.

Joseph, a 10 year old boy comes into the ED. He is a known asthmatic on treatment. He appears breathless with an audible wheeze. He is able to talk in complete sentences. He has a RR of 25, sats of 94%, pulse of 100 and his PEF is 60% of normal.

What is the severity score of this child’s asthma presentation?

What investigations and treatment options should you consider?

How do you decide when it is safe to discharge home?

The boy is 3 years old with the same presentation – his mum asks you if her son has asthma. What is your response?

When seeing a child with an acute asthma attack, the initial assessment is key to establishing the severity of the attack as this influences ongoing management. 

Clinical signs

Investigations

Management

Burst therapy

When to discharge?

Diagnosis and differentials

Case summary

Leila, a 13 year old female, known asthmatic on treatment, presented to ED breathless and finding it hard to speak in full sentences. Her oxygen saturations are 92%, HR 130 and RR 35

What is the severity score of this child’s asthma presentation?

What investigations and treatment options should you consider?

When do you need to re-assess response to treatment to decide on discharge vs escalation?

Case summary

Do you know how to use a spacer?

Leila has not improved despite the treatment given in ED as outlined in case 2. Her sats are now 89%, she appears cyanosed and has a poor respiratory effort. On auscultation her chest is quiet. What are the next steps that need to be taken?

How would you rate the severity score of this presentation?

What investigations or treatment needs to be considered?

Which IV medications if any should be used? 

Which important differentials need to be considered?

What escalation plans need to be put in place?

Children with continuing severe asthma despite optimal first-line treatments, frequent nebulised β2 agonists and ipratropium bromide plus oral steroids, and those with life-threatening features, need urgent review by a specialist with a view to management in an appropriate high-dependency area or transfer to a paediatric intensive care unit to receive second-line intravenous therapies. It is important to do a blood gas prior to starting bronchodilators to measure the pCO2 and also to monitor side effects of salbutamol (decreasing potassium and lactic acidosis).

Other treatment options

BTS/SIGN guidance for brochodilators

What are your next steps?

A 15 year old male has been brought into resus with features of life threatening asthma. Pre hospital the paramedics gave continuous salbutamol nebulisers, 500mcg Ipratropium nebulisers and 0.5mg IM Adrenaline. The attending medical team in resus administered 2g IV Mg over 20 mins and a bolus of 250mcg IV Salbutamol. The patient then became unresponsive with no respiratory effort.

What are the next steps that need to be taken?

What is the ‘deadly triad’ in asthma?

What are the key ALS modifications in asthma arrest?

In the pre-hospital setting, paramedics usually give IM Adrenaline to cover for the possibility of a diagnosis of anaphylaxis. 

In this case the patient has arrested. As soon as this has been identified, CPR needs to be initiated as per the ALS guidelines.

The cause of cardiac arrest in asthma is a result of the ‘deadly triad’:

Important modifications and considerations in managing cardio respiratory arrest in asthma (RCEMLearning – https://www.rcemlearning.co.uk/foamed/arrest-asthma/):

  1. Intubate Early

Due to the need for high inflation pressures, an endotracheal tube (ETT) is needed. In addition this protects the airway from the increased risk of regurgitation and aspiration.

  1. Ventilate with caution

The European Resuscitation Council recommends 8-10 breaths per minute with the lowest tidal volume required to see the rise and fall of the chest, to avoid dynamic hyperinflation. Tachypnoea must be avoided as this reducses expiratory time, thus increasing the residual volume in the alveoli. This auto PEEP increases intrathoracic pressure which reduces venous return, impeding CPR. 

  1. Manual chest deflation

If the patient has a hyperinflated chest/poor excursions of the chest wall, disconnect the ETT and apply manual pressure to the patient’s chest to expel the trapped air. 

  1. Consider tension pneumothorax

If ETT disconnection does not improve ventilation, consider performing a bilateral thoracostomy.

  1. Rehydrate

Dehydration and reduced intravascular volume compromises effective CPR. It also causes mucus to be thicker which can plug small airways. So ensure you give IV fluids. 

  1. GIVE ADRENALINE! – Utilise its bronchodilator effect. 

Question 1

Answer 1

Question 2

Answer 2

Question 3

Answer 3

Question 4

Answer 4

Question 5

Answer 5

M Balfour-Lynn (1996) Why do viruses make infants wheeze?, Archives of Disease in Childhood  74: 251-259

MO Stormon, CM Mellis, PP Van Asperen, HA Kilham (2002) Outcome evaluation of early discharge of asthmatic children from hospital: A randomized control trial, Journal of quality in clinical practise, Vol 19, issue 3, 149-154

Huay-ying Lo, Amanda Messer, Jennifer Loveless, Esther Sampayo, Robert H. Moore, Elizabeth A. Camp, Charles G. Macias and Ricardo Quinonez (2018) Discharging Asthma Patients on 3-Hour β-Agonist Treatments: A Quality Improvement Project, Hospital Pediatrics, 8 (12) 733-739

Basnet S, Mander G, Andoh J, Klaska H, Verhulst S, Koirala J (2012) Safety, efficacy, and tolerability of early initiation of noninvasive positive pressure ventilation in pediatric patients admitted with status asthmaticus: a pilot study. Pediatr Crit Care Med 13(4):393-8.

Snelson, E (2019) A simple model for understanding the causes of paediatric wheeze, Paediatrics and Child Health, Volume 29, Issue 8, Pages 365-368

DFTB – Managing acute asthma, Simon Craig (2017)

DFTB – Asthma for ambos (2016)

DFTB – Are nebulisers or spacers better for managing acute asthma (2013)

DFTB – The curious incident of the wheeze in the night

PEMBLOG – Heliox in the emergency department (2017)

EMCases – Management of acute paediatric exacerbations (2016)

BTS/SIGN British guideline on the management of asthma in children (2019)

PaediatricFOAM – ventilation strategies for the critically ill asthmatic (2019)

RCEMLearning – Arrest in asthma

gppaedstips.blogspot.com – The NYCE guideline for viral induced wheeze – Let’s clear a few things up (2019)



Please download our Facilitator and Learner guides

Author

  • North East Londoner, born and raised. Currently an ST3 Emergency Medicine Trainee, lined up for working with the Physician Response Unit next year and aspiring for a future in Paediatric Emergency Medicine!

    View all posts

KEEP READING

No data was found

Leave a Reply

Your email address will not be published. Required fields are marked *

1 thought on “Asthma Module”

DFTB WORLD

EXPLORE BY TOPIC