Paediatric ophthalmology: Siobhan Wren at DFTB19

Cite this article as:
Team DFTB. Paediatric ophthalmology: Siobhan Wren at DFTB19, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.21733

Siobhan Wren is an ophthalmologist based at Imperial College in London. It’s a rotation that most of us skipped out on in medical school but with paediatric ocular trauma accounting for a third of all ocular trauma it is something that needs to be on our radar.

In this talk she focuses on the first sixty minutes after the injury – keeping the patient comfortable and safe, not making things worse and a stepwise approach to the basic examination.

 

This talk was recorded live at DFTB19 in London, England. With the theme of  “The Journey” we wanted to consider the journeys our patients and their families go on, both metaphorical and literal. DFTB20 will be held in Brisbane, Australia.

If you want our podcasts delivered straight to your listening device then subscribe to our iTunes feed or check out the RSS feed. If you are more a fan of the visual medium then subscribe to our YouTube channel. Please embrace the spirit of FOAMed and spread the word.

iTunes Button
 

Selected References

Sii F, Barry RJ, Abbott J, Blanch RJ, MacEwen CJ, Shah P. The UK Paediatric Ocular Trauma Study 2 (POTS2): demographics and mechanisms of injuries. Clinical ophthalmology (Auckland, NZ). 2018;12:105.

Seat Belt Injuries

Cite this article as:
Keith Amarakone. Seat Belt Injuries, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.20575

A 10 year old boy presents to your emergency department following a high speed MVA – car vs tree. He was seated in the rear middle seat.  On arrival he is noted to have significant bruising across his lower abdomen from the seat belt but otherwise appears well.

Trauma, Teams and Tribes: Vic Brazil at DFTB18

Cite this article as:
Team DFTB. Trauma, Teams and Tribes: Vic Brazil at DFTB18, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.20194

Victoria Brazil is a senior staff specialist at the Gold Coast University Hospital. She is a world renowned expert in the role of simulation in medical education.

Catch 22

Cite this article as:
Ana Waddington. Catch 22, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.19122

James was 13 the first time I treated him in A&E. He was rushed in after being hit on the head with a metal bar, but he wouldn’t tell us what had happened. Some others had seen him, rushed him, started beating him with bats and bars – that was all he said he remembered. It was clear that James was already deeply involved in the world of gang violence, and it was equally clear that if he wasn’t saved from it soon this world would destroy him. We tried to get James to stay in A&E long enough to hear the results of his scan, but as soon as he got a chance he slipped out and back onto the streets. My fear was that before long the streets would deliver him back to us, only this time he wouldn’t be able to walk out again.

pHirst Aid – Management of Chemical Attacks in Children

Cite this article as:
Anna Dobbie. pHirst Aid – Management of Chemical Attacks in Children, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.18552

Chemical attacks (or acid attacks as they are colloquially known) are increasing. The latest numbers show the UK has one of the highest rates of violent acid attacks per capita in the world. The latest figures released report 601 attacks in the UK in 2016 but 400 in first 6 months of 2017. London has emerged as a hot-spot for acid attacks in recent years and it is thought that many attacks still go unreported.

Cutting edge burns management: Fiona Wood at DFTB18

Cite this article as:
Team DFTB. Cutting edge burns management: Fiona Wood at DFTB18, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.18295

Professor Fiona Wood, AM, is one of the worlds leading burns surgeons.  Having qualified from St Thomas’ in London she decided to do what so many of us do and move down under. Since the early days of her career, she has recognized that to improve the outcomes of burns victims involves not just scarless skin but also healing in mind and spirit. Along with Marie Stoner, she pioneered the use of ‘spray-on skin’ and is well known for the care she provided to the victims of the Bali bombings back in October 2002.

In this talk, she talks about the past, the present and the future of burns care whilst championing the roles of women in medicine and surgery. As a mother of six children, she reminds us all that there is nothing that cannot be achieved if you ask for it.

 

This talk was recorded live at DFTB18 in Melbourne, Australia. With the theme of ‘Science and Story’ we pushed our speakers to step out of their comfort zones and consider why we do what we do. Caring for children is not just about acquiring the scientific knowhow but also about taking a look beyond a diagnosis or clinical conundrum at the patient and their families.

If you want our podcasts delivered straight to your listening device then subscribe to our iTunes feed or check out the RSS feed. If you are more a fan of the visual medium then subscribe to our YouTube channel. Please embrace the spirit of FOAMed and spread the word.

 

iTunes Button

 

 

A future towards zero: Warwick Teague at DFTB18

Cite this article as:
Team DFTB. A future towards zero: Warwick Teague at DFTB18, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.18203

This talk was recorded live at DFTB18 in Melbourne, Australia. With the theme of ‘Science and Story’ we pushed our speakers to step out of their comfort zones and consider why we do what we do. Caring for children is not just about acquiring the scientific knowhow but also about taking a look beyond a diagnosis or clinical conundrum at the patient and their families. Tickets for DFTB19, which will be held in London, UK, are now on sale from www.dftb19.com.

Skeletal survey for NAI

Cite this article as:
Katie Mckinnon. Skeletal survey for NAI, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.17911

In November 2018 the revised edition of “The radiological investigation of suspected physical abuse in children” was released in the UK. This was written by the Royal College of Radiologists and the Society and College of Radiographers, and endorsed by the Royal College of Paediatrics and Child Health. It produced guidance on the process of skeletal surveys and how and when to perform them.

The management of non-accidental injury is an area of fear for many paediatricians. The increasing guidance in this area helps to take some of the variation in practice out of the process.

Thoracolumbar spine x-rays

Cite this article as:
Tessa Davis. Thoracolumbar spine x-rays, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.17581

Read our step-by-step guide to interpreting thoracic and lumbar spine x-rays.

Thoracolumbar spine x-ray involves two views – AP and lateral.

 

  1. Check it’s an adequate view

For a lumbar spine view

  • you should be able to see L1-L5 but also the full T12 vertebral body, T11/12, and the sacrum on the AP view
  • the vertebral bodies, facet joints, and pedicles should be clearly visible on the lateral view
  • the transverse processes should also be visible (and are often obscured by gas)

For the thoracic spine view

  • make sure the whole thoracic spine is visible
  • you should be able to see the pedicles, spinous processes, and vertebral bodies
  • the ribs can cause difficulty seeing the thoracic spine on a lateral view

 

2. Know your anatomy

  • Clavicle is at T3
  • Tracheal bifurcation is T4/5
  • 12th rib is at T12
  • In the lumbar spine, the disc spaces also increase in size, although note that the L5/sacral space is narrower than the L4/L5 space

From https://www.wikiradiography.net/

3. Check the alignment

On the AP check that the vertebral bodies and spinous processes are aligned. On the lateral, check the alignment of the vertebral bodies.

 

 

4. Look for loss of vertebral height

In the thoracic spine, the vertebral bodies (and the disc spaces) should gradually increase in size as you get further down the spine.

Check all the vertebral bodies looking specifically for loss of height. This indicates a compression fracture.

 

 

 

5. Look for widened inter-spinous or inter-pedicle distance and check the processes

In the lumbar spine check that all the pedicles, spinal, and transverse processes are intact.

See below (under burst fracture) for an example of widened inter-pedicle distance and (under Chance fracture) widened spinous process process distance.

Transverse process fracture From https://www.imageinterpretation.co.uk/thoracolumbar.php

 

6. Check for translation/rotation or distraction

Translation or rotation is displacement in horizontal plane; and distraction is displacement in the vertical plane.

Translation/rotation is due to a side-to-side motion (can be left-to-right or front-to-back). It is a serious injury and always involves the posterior ligamentous complex.

Distraction is where the vertebrae are pulled apart and carries a high risk of cord injury. Often there is compression at the other side (see Chance fracture below).

 

7. Know the common types of fractures

Compression fracture

This is the most common type of fracture and is identified through loss of vertebral height (see number 4 above). It involves one column only and is a stable fracture.

 

Burst fracture

On x-ray alone 25% of burst fractures are misdiagnosed as vertebral compression fractures. A burst fracture is where there is a compression, but part of the vertebral body has been projected out anteriorly.

On AP view there will be an increased interpedicular distance in 80% of burst fractures.

On lateral view there will be reduced vertebral height and disrupted anterior alignment.

A burst fracture involves two columns and is usually considered to be unstable.

 

Chance fracture

Usually from a seatbelts injury and is commonly at L2/L3

This is a flexion-distraction injury where there is horizontal splitting of the vertebral body with ligament rupture. This is an unstable fracture and involves all three columns

Sometimes there is increased distance between the spinous processed on the lateral view (but not always).

On the AP view there can be increased distance between the spinous processes at the level of the Chance fracture.

 

Jumper’s/lover’s fracture

So-called because it’s usually from people jumping out of windows to escape the police or angry partners. This is severe axial loading leading to compression/burst fractures alongside a calcaneus fracture.

https://radiopaedia.org/articles/lovers-fracture-2?lang=us

References

Radiopaedia

Radiology Assistant

Norwich Image Interpretation Course

Radiology Masterclass

Thinking FAST, and slow

Cite this article as:
Andrew Tagg. Thinking FAST, and slow, Don't Forget the Bubbles, 2018. Available at:
https://doi.org/10.31440/DFTB.17324

10-year-old Elliott is brought into your emergency department after falling off his bike. Whilst trying to escape from a gang of bullies he went off-road, left the ground and landed awkwardly. The front wheel twisted and the handlebars hit his belly. He is complaining of pain in the left upper quadrant. He has been treated with intranasal fentanyl and is haemodynamically stable. Your registrar asks if he can do a FAST exam on him.

 

Basics principles of the FAST exam

The Focused Abdominal Sonography for Trauma exam superseded diagnostic peritoneal lavage in the late 1980s as a means of determining significant intra-abdominal free fluid. The actual monicker, FAST, was first used by Royzycki et al back in the mid-90s.

The FAST exam is a rapidly performed test that looks at four specific areas – RIGHT upper quadrant, LEFT upper quadrant, subxiphoid region, and pelvis. The wielder of the probe is looking for free fluid rather than directly looking for solid organ injury.

The 4 traditional FAST views – RUQ, LUQ, subxiphoid and pelvic.

It’s important to remember that the FAST exam came about as a tool to examine haemodynamically UNSTABLE patients in order to determine who needed to go to the operating theatre or needed a critical intervention (such as pericardiocentesis).

According to Rippey and Royce, the sensitivity of FAST in adults ranges from 64-98%. But…

 

What about in kids?

CT is considered the gold standard for the examination of intra-abdominal injury in children but it is not without risk. As clinicians we are reluctant to expose kids to needless radiation and try and act within the ALARA (As Low As Reasonably Possible) principle. With an increased focus on the use of point of care ultrasound throughout paediatrics it can be tempting to translate the adult approach of using the FAST scan, in kids.

A couple of concerns have been raised regarding the use of FAST in children:

 

Not all children with abdominal injuries have free fluid

A number of studies in haemodynamically stable children have found significant solid organ injuries (liver, spleen or kidney lacerations) on CT with normal bedside ultrasound. Whilst 22% of abdominal injuries in adults are not associated with free fluid this rises to a whopping 37% in children.

A 2007 meta-analysis by Holmes et al found an 80% sensitivity for detecting intra-peritoneal fluid via sonography. When the authors only looked at the more methodologically rigorous studies the sensitivity dropped to 66%.

 

The management of solid organ injuries in the paediatric population is different

Nearly all intra-abdominal injuries in children are managed conservatively and so accurate delineation is important. Finding free fluid on sonographic assessment does not mandate them going to theatre, even in the setting of haemodynamic instability. Operative management of hepatic injuries in children has been associated with higher mortality than a conservative approach.

 

So what does this all mean?

CT scanning does have its drawbacks – it involves ionising radiation, IV contrast and is time and money intensive in comparison with the FAST scan. But if ultrasound cannot tell us what we need to know then there is no comparison. A number of studies that have shown a better correlation between CT and US do not use the FAST scan but a modified form or even complete abdominal sonography by qualified sonographers. Given that US is very much an operator-dependent imaging modality it is vital that anyone using it has been trained (and accredited) in its use.

Emergency physicians may think they are amazing at performing a focused abdominal assessment and wield the probe at every given opportunity ‘for practice’. This will skew the accuracy of the test. If the pre-test probability of a positive result is low in the first place then the number of true negatives will, of course, be higher and the accuracy of the test will appear to be higher than it actually is.

In my attempt to trawl through some of the data I have consistently come across the idea that FAST is great because it is so accurate. The only way of knowing this is to look at the studies that compare it with a CT. Just because you do not pick up an injury immediately does not mean that one is not there. For example, in the Soudack et al. paper they described three negative FAST, positive CT cases – a haemo-peritoneum, one splenic laceration, and one hepatic laceration. Because the CT did not show free fluid these did not count as false-negatives!

A positive FAST is helpful but a negative one…not so much.

 

What do I do?

What I am really interested in is the Negative Predictive Value of the test i.e. the chance that if my scan is NEGATIVE there is NO free fluid. Unfortunately, a negative scan, in isolation does not tell me that there is not a significant intra-abdominal injury. In the setting of a worrying mechanism (e.g. handlebar versus spleen) with bruising and tenderness to the left upper quadrant and a NEGATIVE fast I cannot say that the child is okay and send them home. This is the concern that I have. That the test will stop the less astute clinician from thinking.

One has to be very wary when interpreting the literature surrounding FAST scans in paediatrics. All the scan tells you is that there is no free fluid. If the patient is haemodynamically stable and there is suspicion of an intra-abdominal injury then the patient should have a CT.

Haemodynamically stable patients

In the haemodynamically stable patient with an unconcerning physical exam, good quality images on a comprehensive abdominal ultrasound and the ability to serially examine the patient then a CT may not be warranted. A comprehensive abdominal ultrasound is NOT the same as FAST.

One might think that the use of ultrasound might have other benefits but a large study by Holmes et al. in 2017 showed no alteration in the number of CT scans requested, number of patients hospitalized or requiring surgery.

 

Haemodynamically unstable patients

These patients need resuscitation, often with blood products, until they are stable enough to enter the CT scanner/IR suite. A FAST scan is likely to be positive but given that over 90% of intra-abdominal injuries in children are managed without going to theatre it is unlikely to change my management.

Whilst this is clearly not a comprehensive review, any collection of data that has such a wide range of specificity needs to be considered. I could add another 10 studies and they might tighten up my spread but in the largest trials, involving ED physicians we are just not that great.

So the bottom line, when taken in isolation, as I see it is this best case/worst case…

Thanks to Arun Ilancheran and Ross Fisher for pushing me down this rabbit hole.

 

Selected references

Ashrafi A, Heydari F, Kolahdouzan M. The Utility of Ultrasound and Laboratory Data for Predicting Intra-abdominal Injury among Children with Blunt Abdominal Trauma. International Journal of Pediatrics. 2018 Aug 1;6(8):8047-59.

Calder BW, Vogel AM, Zhang J, Mauldin PD, Huang EY, Savoie KB, Santore MT, Tsao K, Ostovar-Kermani TG, Falcone RA, Dassinger MS. Focused assessment with sonography for trauma in children after blunt abdominal trauma: A multi-institutional analysis. Journal of Trauma and Acute Care Surgery. 2017 Aug 1;83(2):218-24.

Coley BD, Mutabagani KH, Martin LC, Zumberge N, Cooney DR, Caniano DA, Besner GE, Groner JI, Shiels WE. Focused abdominal sonography for trauma (FAST) in children with blunt abdominal trauma. Journal of Trauma and Acute Care Surgery. 2000 May 1;48(5):902-6.

Emery KH, McAneney CM, Racadio JM, Johnson ND, Evora DK, Garcia VF. Absent peritoneal fluid on screening trauma ultrasonography in children: a prospective comparison with computed tomography. Journal of pediatric surgery. 2001 Apr 1;36(4):565-9.

Fox JC, Boysen M, Gharahbaghian L, et al. Test characteristics of focused assessment of sonography for trauma for clinically significant abdominal free fluid in pediatric blunt abdominal trauma. Acad Emerg Med 2011; 18:477– 482.

Holmes JF, Brant WE, Bond WF, Sokolove PE, Kuppermann N. Emergency department ultrasonography in the evaluation of hypotensive and normotensive children with blunt abdominal trauma. Journal of pediatric surgery. 2001 Jul 1;36(7):968-73.

Holmes JF, Kelley KM, Wootton-Gorges SL, Utter GH, Abramson LP, Rose JS, Tancredi DJ, Kuppermann N. Effect of abdominal ultrasound on clinical care, outcomes, and resource use among children with blunt torso trauma: a randomized clinical trial. Jama. 2017 Jun 13;317(22):2290-6.

Holmes JF, Gladman A, Chang CH. Performance of abdominal ultrasonography in pediatric blunt trauma patients: a meta-analysis. Journal of pediatric surgery. 2007 Sep 1;42(9):1588-94.

Kessler DO. Abdominal Ultrasound for Pediatric Blunt Trauma: FAST Is Not Always Better. Jama. 2017 Jun 13;317(22):2283-5.

Menaker J, Blumberg S, Wisner DH, Dayan PS, Tunik M, Garcia M, Mahajan P, Page K, Monroe D, Borgialli D, Kuppermann N. Use of the focused assessment with sonography for trauma (FAST) examination and its impact on abdominal computed tomography use in hemodynamically stable children with blunt torso trauma. Journal of Trauma and Acute Care Surgery. 2014 Sep 1;77(3):427-32.

Moore C, Liu R. Not so FAST—let’s not abandon the pediatric focused assessment with sonography in trauma yet. Journal of thoracic disease. 2018 Jan;10(1):1.

Murphy R, Ghosh A. The accuracy of abdominal ultrasound in paediatric trauma. Emergency medicine journal: EMJ. 2001 May;18(3):208.

Mutabagani KH, Coley BD, Zumberge N, McCarthy DW, Besner GE, Caniano DA, Cooney DR. Preliminary experience with focused abdominal sonography for trauma (FAST) in children: is it useful?. Journal of pediatric surgery. 1999 Jan 1;34(1):48-54.

Retzlaff T, Hirsch W, Till H, Rolle U. Is sonography reliable for the diagnosis of pediatric blunt abdominal trauma?. Journal of pediatric surgery. 2010 May 1;45(5):912-5.

Rippey JC, Royse AG. Ultrasound in trauma. Best Practice & Research Clinical Anaesthesiology. 2009 Sep 1;23(3):343-62.

Rozycki GS, Ochsner MG, Jaffin JH & Champion HR. Prospective evaluation of surgeons’ use of ultrasound in the evaluation of trauma patients. The Journal of Trauma 1993 Apr; 34(4): 516–526. discussion 26–7.

Scaife ER, Rollins MD, Barnhart DC, Downey EC, Black RE, Meyers RL, Stevens MH, Gordon S, Prince JS, Battaglia D, Fenton SJ. The role of focused abdominal sonography for trauma (FAST) in pediatric trauma evaluation. Journal of pediatric surgery. 2013 Jun 1;48(6):1377-83.

Schonfeld D, Lee LK. Blunt abdominal trauma in children. Current opinion in pediatrics. 2012 Jun 1;24(3):314-8.

Soudack M, Epelman M, Maor R, Hayari L, Shoshani G, Heyman‐Reiss A, Michaelson M, Gaitini D. Experience with focused abdominal sonography for trauma (FAST) in 313 pediatric patients. Journal of Clinical Ultrasound. 2004 Feb;32(2):53-61.

Soundappan SV, Holland AJ, Cass DT, Lam A. Diagnostic accuracy of surgeon-performed focused abdominal sonography (FAST) in blunt paediatric trauma. Injury. 2005 Aug 1;36(8):970-5.

Suthers SE, Albrecht R, Foley D, Mantor PC. Surgeon-Directed Ultrasound for Trauma is a Predictor of Intra-Abdominal Injury in Children/DISCUSSION. The American surgeon. 2004 Feb 1;70(2):164.