Clavicle fractures

Cite this article as:
PJ Whooley. Clavicle fractures, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29144

Darragh is a 7 year old who needed to get his ball back from his neighbour. He decided to jump the tall fence but fell before he got over the top and landed on his right shoulder. Mum brings him in and he is holding right arm to his side and not happy when you try and examine his shoulder. The ED doctor has ordered an x-ray.

Epidemiology

Clavicular fractures are the most common shoulder fracture in children (8% to 15% of all paediatric fractures). They are common during delivery too and occur in 0.5% of all normal and 1.6% of breech deliveries, accounting for 90% of obstetric fractures.

Anatomy

80% of clavicular growth occurs at the medial epiphysis. It ossifies between 12-19 years of age and fuses fully by 22-25 years. The clavicle is the first bone in the body to ossify (intrauterine week 5), but the medial clavicular epiphysis is the last to appear and close. There are multiple ligamentous connections that are relevant.

Mechanism of injury

There are two mechanisms of injury: indirect and direct.

Indirect injuries commonly occur after a fall onto an outstretched hand (FOOSH).

Direct fractures are sustained from direct trauma to the clavicle or acromion and are associated with a higher incidence of injury to underlying neurovascular and pulmonary structures.

Evaluation

Children typically present with a painful, palpable and tender mass. There is usually a discrete tender swelling, but tenderness may be diffuse in the cases of a plastic bowing. Bony crepitus and ecchymosis are often present. It is important to ensure there is no overlying skin compromise.

Assess neurovascular status as although brachial plexus and subclavian artery injuries are rare, they can occur and will require urgent orthopaedic intervention.

In the setting of direct trauma, assess the child’s respiratory status. Rarely medial clavicular fractures may be associated with tracheal compression in the setting of significant posterior displacement.

Radiology

Clavicle plain films are often sufficient rather than full shoulder x-rays. Often a single view might be all that is obtained. The diagnosis may be made as an incidental finding on other x-rays such as a chest x-ray. In the trauma setting, 2 views are ideally better than one: a frontal view and a cephalic tilt (15-45 degree).

In most cases, clavicle fractures are easily identified on plain x-ray. There is commonly displacement of the fracture; the medial fragment is pulled upwards by the sternocleidomastoid while the distal fragment is pulled downwards by the weight of the arm. Occult fractures may also be present. When describing a clavicle fractures note the location of the fracture along the shaft. The Allman Classification of clavicle fractures separates the segments into thirds.

Look for angulation and/or displacement of the fracture. Is it comminuted?  If there is shortening, measure, and document the degree of overlap (> or < 2cm), sometimes best seen on a PA chest x-ray.

Note any relevant negatives and associated findings. Comment on any variation in sternoclavicular (SC) joint, acromioclavicular (AC) and coracoclavicular (CC) alignment and distances.

Normal acromio-clavicular alignment

Midshaft clavicular fractures

Midshaft clavicular fractures are the most common paediatric shoulder fractures, accounting for 10-15% of all fractures. Half of these are in children <10 years. They almost always heal but if they don’t, the malunion is usually not of clinical significance. There is excellent remodeling within one year and complications are very uncommon. Thankfully, like many other children’s fractures, they commonly fracture in a greenstick pattern.

Operative management is reserved for adults and children over the age of 10 years, particularly if the clavicle is significantly shortened or displaced.

Case courtesy of Dr Ian Bickle, Radiopaedia.org. From the case rID: 53795

Neer classification of midshaft fractures

  • Non-displaced: If there is less than 100% displacement, these are managed conservatively
  • Displaced: If there is greater than 100% displacement, the non-union rate is 4.5%. These are managed operatively.

Medial Clavicular Injuries

Medial clavicular injuries are much less common in children. Most medial clavicular injuries are Salter-Harris type I or II.

True sternoclavicular (SC) joint dislocations, though rare, may occur and in the case of posterior dislocations, 30% are associated with life-threatening mediastinal injuries.

I’ll take a minute to describe this as it’s an important point. In SC joint dislocations, the clavicle typically displaces anteriorly in up to 90% of cases.

If concerned, then x-raying both sides (called a serendipity view) would help make a diagnosis.  If there remains concern, then a CT scan of the SC joint can be helpful, and is generally favoured as the imaging modality of choice.

Clinical image showing a protrusion over the right SCJ. Corresponding AP plain film demonstrating widening of the SCJ. From brownemblog.com

Most children with an anterior SC joint dislocation can be managed with a sling or collar and cuff.

Much less often the clavicle moves posteriorly in relation to the sternum, especially in the setting of tremendous force applied to the shoulder or the medial clavicle. If there is no evidence of medial epiphyseal fracture but pain and swelling is present you must consider a dislocation. Posterior dislocations can present with pain over the anterior chest, increased on shoulder movement. A dislocation may impact the structures behind including the trachea and blood vessels in that region. Hoarseness could indicate a recurrent laryngeal nerve injury or airway compromise.

SC joint dislocations are classified as Grades I-V, with Grade V being a posterior dislocation. Any child with a suspected posterior SC joint dislocations should be referred to the on-call orthopaedic team – these are orthopaedic emergencies, with CT angiograms favoured to characterise the extent of vascular injury and operative reduction performed, often in consultation with vascular surgeons.

Lateral third clavicle fractures

These can be easily confused with acromioclavicular (AC) joint injuries. Both present clinically with pain and tenderness around the AC joint plus swelling and bruising. The ‘cross-arm test’ (ABDuction across the chest) results in increased pain in both conditions. Little or no deformity may be seen on x-ray unless a Salter-Harris II fracture is present.

Management

Nonoperative management involves sling immobilisation with gentle range of motion exercise at 2-4 weeks and strengthening at 6-10 weeks. This is indicated in fractures of the middle 1/3, if there is shortening and displacement that is under 2cm with no neurology.

Operative management, open reduction and internal fixation (ORIF), is indicated in open fractures, displaced fractures with skin compromise and/or subclavian artery or vein injury and in major trauma with a floating shoulder where the clavicle and scapular neck are both fractured.

Complications

Non-union can occur in up to 5% of all types of clavicular fractures. Clavicular injuries that are most at risk of non-union include comminuted fractures and 100% displaced fractures with shortening that is over 2cm, resulting in decreased shoulder strength and endurance. Children over the age of 10 with displaced clavicular fractures will often have a face to face consultation in fracture clinic to discuss operative options to optimize outcome.

Who doesn’t need follow-up?

Children under 10 with an undisplaced fracture don’t need follow-up (although some places offer virtual follow-up), with simple management with a broad arm sling for 2 weeks and no contact sports for another 6 weeks after the sling is removed. It’s important to tell the child’s parents that a lump will form at the fracture site and will last for about a year. Give safety netting advice to return if they develop any sensory changes.

Thankfully Darragh only suffered a midclavicular greenstick fracture with minimal angulation. His arm was placed in a broad arm sling and his parents were told to keep it on for 2 weeks and no fence vaulting for a couple of months! As Darragh’s only 7 years old and his fracture was not significantly displaced, his parents were reassured that it would heal nicely. Most importantly he eventually got his ball back. Phew!

References

JS. Zember, ZS Rosenberg, S. Kwong, SP. Kothary, MA. Bedoya. Normal Skeletal Maturation and Imaging Pitfalls in the Pediatric Shoulder.  Radiographics. 2015 Jul-Aug;35(4):1108-22

https://radiopaedia.org/articles/paediatric-shoulder-radiograph-an-approach

Acromio-clavicular joint injuries

Cite this article as:
PJ Whooley. Acromio-clavicular joint injuries, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29623

John went in for the ball but was tackled off it and ended up falling onto his shoulder to the ground. He was able to finish the game but had a lot of pain when he stretched his arm across the front of his chest.

AC joint anatomy

The acromioclavicular (AC) joint combines the distal clavicle and the acromion (the superolateral part of the scapula). The joint is supported by a ligament complex as well as the surrounding fascia and muscles. The main ligaments involved are the acromioclavicular ligaments and the coracoclavicular (CC) ligament. The CC ligament is made up of the lateral trapezoid ligament and the medial conoid ligament. 

Mechanism of injury

Injury to the AC joint means disruption of the AC ligaments with or without disruption of the CC ligament. It occurs in up to 10% shoulder girdle injuries and is more common in athletes. Injury typically occurs from a direct blow or following a fall onto the superior or lateral part of the shoulder with the arm adducted. This results in the acromion being forced inferiorly and medially to the clavicle. Injury with a low force causes an AC sprain, with progressively increased force causing AC ligament rupture and then additional sprain and rupture of the CC ligaments. 

Examination 

AC joint injury presents with pain and tenderness over a possibly swollen AC joint. The pain may also be referred to the trapezius muscle. When compared to the contralateral side there may be an abnormal contour. 

If the diagnosis is in doubt you can perform the crossbody ADDuction (Scarf test) to compress the AC Joint. If this is painful, this is suggests AC joint injury. A careful distal neurovascular exam of the involved extremity shoulder be performed, documenting radial, ulnar and median nerve function (take a look at the examining paediatric elbow post for top tips on conducting a proper neurovascular assessment in upper limb injuries).

Young boy trying to hurt his sister (and failing)

It is important to rule out atraumatic distal clavicle osteolysis, a repetitive stress injury in young athletes who do high level upper weight training.

AC injury infographic

Radiology

There are two approaches to plain film imaging in suspected AC joint injury:

  • a single AP view including both AC joints 
  • one AP view of each shoulder comparing affected with the unaffected side

This image from Orthobullets.com shows AC joint widening on the left compared to a normal AC joint on the right.

If there is still some doubt the AC joints can be better seen on Zanca views using a 10-15 degrees of cephalic tilt. Stress views are often used with weights in each hand to determine AC joint instability. This is important also to out-rule coracoid fractures often seen in stress overuse as in young athletes who do repetitive weight training.

Zanca views of the left shoulder. In these images, the ACJ has not become widened on weight-bearing indicating a normal AC joint, with no injury. Case courtesy of Dr Henry Knipe, Radiopaedia.org. From the case rID: 68155

Look carefully at the clavicle for any associated occult clavicle fractures.

Classification

Paediatric AC joint injuries are classified as grades I – VI by the Rockwood classification

In the ED, the most common injuries, occurring after minor trauma, are types I to III, ranging from stretching of the AC ligament to complete tear with clavicle lifting: 

  • I – AC ligament sprain with intact periosteal sleeve
  • II – Partial periosteal sleeve disruption with AC Joint widening (CC distance <25% contralateral side)
  • III – Disrupted periosteal sleeve with superior (upwards) displacement of the clavicle, with between 25 – 100% displacement

Types IV to VI typically occur after high energy trauma and need surgical intervention:

  • IV – Distal clavicle displaced posteriorly through the trapezius
  • V – Deltoid and trapezius detachment and clavicle displacement >100%
  • VI – Clavicle displaced inferiorly under the coracoid

Management

Rockwood Grades I – III AC joint injuries: Non-operative management is the mainstay as these are low energy injuries. Analgesia, ice and rest in a sling or figure-of-eight braces followed by gentle range of motion exercise once the pain has settled. Early rehabilitation with cautious exercise results in earlier return of normal shoulder range of motion, with functional motion by 6 weeks and normal activity by 12 weeks. The lower the grade the earlier the return to normal function. Caution needs to be taken to avoid manoeuvres that that strain the ligaments and cause pain. Avoid cross-body ADDuction, extreme internal rotation (i.e. behind the back) and overhead movements.

Rockwood Grades IV to VI injuries: Operative management is indicated in grades IV to VI but also in Grade III that have failed non operative treatment or in elite athletes and for cosmesis.

Complications

Up to 30 – 50% of patients with AC joint injuries complain of residual pain. 

John thankfully only had a Grade II AC joint injury and wore a shoulder immobilizer for 3 weeks. He’s already back training but is a little more cautious when he goes in for the tackle. 

References

AD. Mazzocca, RA. Arciero, J. Bicos. Evaluation and treatment of acromioclavicular joint injuries. Am J Sports Med 2007;35:316-329.

JD. Gorbaty, JE Hsu. AO. Gee.  Classifications in Brief: Rockwood Classification of Acromioclavicular Joint Separations. Clin Orthop Relat Res. 2017 Jan; 475(1): 283–

S. Evrim. N. Aydin, OM. Topkar. Acromioclavicular joint injuries: diagnosis, classification and ligamentoplasty procedures. EFORT Open Rev 2018;3:426-433

Wrist x-rays

Cite this article as:
Sian Edwards. Wrist x-rays, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29082

The wrist is one of the most commonly requested X-Rays in the children’s emergency department. Wrist views are requested when injury to the distal radius/ulna or carpal bones are suspected. Below is a systematic approach to interpretation.

The wrist series examines the carpal bones (scaphoid, lunate, triquetrum, pisiform, trapezium, trapezoid, capitate and hamate), the radiocarpal joint and the distal radius and ulna. 

There are eight carpal bones present and each one is named according to its shape:

  1. Scaphoid (boat-shaped)
  2. Lunate (crescent moon-shaped)
  3. Triquetrum (pyramidal)
  4. Pisiform (pea-shaped)
  5. Trapezium (irregular trapezium-shaped)
  6. Trapezoid (wedge-shaped)
  7. Capitate (head-shaped) – *the largest of the carpal bones
  8. Hamate (wedge-shaped with a bony extension, or ‘hook’)
Labelled XR of carpus
AP
Proximal carpal rowDistal carpal row
ScaphoidTrapezium
LunateTrapezoid
TriquetrumCapitate
PisiformHamate

How to best remember the carpal bones

There are many mnemonics around – some too rude for mention here! You will need to find the one that works for you… here’s one that’s super suited for clinicians working with kids:

Sam Likes To Push The Toy Car Hard

Failing that, save an image to your phone for quick reference!

Mnemonic for remembering carpal bones

Ossification

The carpal bones are formed entirely from cartilage at birth – this is important from a radiological viewpoint as it means they are not visible on x-ray initially. They begin to ossify from about 1-2 months of age and are fully developed by the age of 8-12 years. Although there is variability in the timing, the order is always the same.

  1. Capitate 1-3 months
  2. Hamate 2-4 months
  3. Triquetrum 2-3 years
  4. Lunate 2-4 years
  5. Scaphoid 4-6 years
  6. Trapezium 4-6 years
  7. Trapezoid 4-6 years
  8. Pisiform – 8-12 years

Generally, on x-ray, one carpal bone is visible every year until full development – this acts as a handy (pun intended) ageing tool!

On requesting wrist X-Rays, most commonly you will receive posteroanterior and lateral projections, with oblique views forming part of the series usually when carpal injury is suspected.

1. Check the soft tissues

Look for signs of swelling or any incidental findings.

2. Trace the bony cortices

Trace each bone in turn to look for breaks or irregularities in the cortex.

Look closely at the distal radius, proximal carpal row (especially the scaphoid) and the proximal metacarpals. Disruptions in the cortex may be very subtle as in the case of this torus fracture (aka a buckle fracture)

Buckle fracture of radius
Buckle fracture

3. Check bony alignment

On the AP view:

The distal radial articular surface should curve round the carpals with the articular surface getting more distal towards the ulnar styloid. The articular surfaces of the proximal and distal carpal rows should form three smooth arcs – these can be traced on the AP film.

The spacing between all carpal bones should be 1-2mm.

If the arc is broken or there is widening or lack of uniformity between the spaces, think about carpal dislocation.

The articular cortex at the base of each metacarpal parallels the articular surface of the adjacent carpal bone.

The carpo-metacarpo (CMC) joint spaces should be clearly seen and of uniform width (1-2mm).

The 2nd to 5th CMC joints are visualised as a zigzag tram line – on a normal view, there will always be the “light of day” seen between the bases of the 4th and 5th metacarpals and the hamate bone. If this is narrowed, think dislocation of the 4th or 5th metacarpal.

Labelled AP view of wrist
AP view

On the lateral view:

The distal radius, lunate and capitate should articulate with each other in a straight line on the lateral x-ray – the apple, cup, saucer analogy – the cup of the lunate should never be empty.

Lateral view of carpus
Normal capitate – lunate – radius alignment. Image adapted from a case courtesy of Dr Jeremy Jones, Radiopaedia.org. From the case rID: 37947

If the cup is empty, this suggests a perilunate dislocation.

Perilunate dislocation
Perilunate dislocation. Image adapted from a case courtesy of Dr Ian Bickle, Radiopaedia.org. From the case rID: 46714
The apple and cup model of perilunate dislocation
The slipped cup of the perilunate dislocation

References

https://radiopaedia.org/articles/wrist-radiograph-an-approach?lang=gb

Galeazzi fracture-dislocations

Cite this article as:
Rie Yoshida. Galeazzi fracture-dislocations, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.21150

Patrick is a 15-year-old boy who presents to the Emergency Department with a painful left arm.  He tells you he fell off his bicycle, putting out his left hand out to break the fall.  On examination, his left forearm is deformed at the wrist.  There are no open wounds and no signs of compartment syndrome. The limb is neurovascularly intact.  

He has declined analgesia in triage but you convince him to take paracetamol and ibuprofen prior to his x-ray. You order a lateral and AP film of his left forearm including the wrist and elbow.  

Th. Zimmermann [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]
His x-ray shows a distal radial fracture.  Whilst you are assessing the degree of angulation, a medical student leans over your shoulder and asks, ‘Should the head of the ulnar be sticking out like that?’. You nearly missed it but Patrick has a rare Galeazzi fracture-dislocation! 

Galeazzi fracture-dislocations consist of a fracture of the radius with dislocation of the distal radio-ulnar joint.  The fracture usually affects the distal third of the radius.

Galeazzi injuries are very rare in children (more commonly seen in the adult population).  The mechanism of injury is usually due to a fall on an outstretched hand with forearm rotation.

Examination findings

Examine the forearm, wrist and elbow joint.

Inspection and palpation: swelling, tenderness and likely deformity of the distal forearm and wrist. Check for any open wounds.

Range of movement: Maybe reduced at the wrist joint.

Check for signs of neurovascular compromise or compartment syndrome.  Ulnar nerve injury is uncommon.

Investigations

True AP and lateral X-rays of the forearm including the wrist and elbow (including distal humerus).

The key point here is if a distal to mid-shaft radial fracture is seen on  X-ray, have a good look for signs of distal radioulnar joint disruption.

Classification 

Galeazzi fractures are classified according to the direction of ulna displacement.

Galeazzi-equivalent fracture

A Galeazzi-equivalent fracture may occur in children.  This characterised by both

  • fracture of the distal radius
  • fracture of the growth plate of the ulna (separation of the ulnar physis), as opposed to dislocation of the distal radio-ulnar joint, DRUJ.

Treatment

All Galeazzi fracture-dislocations should be referred to orthopaedics on-call as a surgical intervention may be required for unstable or irreducible fractures.  The usual approach in children is conservative management with closed reduction and immobilisation in an above-elbow cast.  They should be followed up in the fracture clinic in 7 days.  Complications include malunion, compartment syndrome and nerve injury but these are more common in adults and if the diagnosis is delayed.  Children tend to have good outcomes with closed reduction and casting, even if the diagnosis is initially missed.

You are congratulated by the ED consultant for identifying Patrick’s Galeazzi fracture-dislocation.  You call the Orthopaedic surgeons.  It is a stable fracture and he has a successful closed reduction performed under procedural sedation in ED.  An above-elbow back slab is applied.  A few hours later, Patrick is ready to go home as he has recovered from the sedation.  On their way out, his mother asks you if he will recover fully.  You explain that he will be followed-up in the fracture clinic in 7 days but that his outcome should be good as the fracture was identified early and the post-reduction x-ray shows good alignment.  On your next day off, you decide to make a table of the differences between Monteggia and Galeazzi fracture-dislocations to aid your memory. 

[wpsm_comparison_table id=”10″ class=””]

*One way of remembering that both Monteggia and Galeazzi require review by orthopaedic surgeons is to remember that both fracture types are named after Italian surgeons!

Top tips

  • If you identify a distal to mid-shaft radial fracture, look for signs of distal radioulnar joint disruption or ulna physis disruption.
  • A useful mnemonic to remember the key differences between Monteggia and Galeazzi fracture-dislocations is MUGR (Monteggia fractured Ulna, Galeazzi fractured Radius)

Selected references

Eberl, R., Singer, G., Schalamon, J., Petnehazy, T. and Hoellwarth, M.E., 2008. Galeazzi lesions in children and adolescents: treatment and outcome. Clinical orthopaedics and related research466(7), pp.1705-1709.

Johnson NP, Smolensky A. Galeazzi Fractures. [Updated 2019 May 2]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470188/

Shoulder x-ray interpretation

Cite this article as:
PJ Whooley and James Foley. Shoulder x-ray interpretation, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29653

Don’t be bamboozled by a paediatric shoulder x-ray. Use an ABCD approach and pick up some tips and tricks in our step-by-step guide.

A – An adequate x-ray 

Is it the right patient and do you have the 2 views you want to see? The typical views are AP (external rotation) and the scapular Y view. (Not sure why then thisx meme may help).  Occasionally an axillary view is added to assess for dislocations and glenohumeral instability. 

B – Bones

Go through the bones one at a time. Follow the cortex of every bone in each view. Look for a disruption or a buckle in the cortex or any fracture fragments. They should all be smooth.  

  • The clavicle is a good bone to start with – it is by far the most common paediatric shoulder injury. Midshaft fractures account for 80% of clavicle fractures. Make sure there are no distal or medial fractures as they can often be subtle. 
  • Move onto the proximal humerus – check the epiphysis and metaphysis. A normal humeral head looks like a walking stick on the AP view. The most common fracture of the humerus is a metaphyseal fracture. Metaphyseal fractures occur in ages 5-12 and Salter-Harris fractures outside of this range. 
  • Don’t forget the scapula, seen best on the Y view. Management is conservative but a fracture here indicates a significant trauma. 

Like the paediatric elbow, the paediatric shoulder has ossification centres, so x-ray appearances differ depending on the age of the child.

At birth, the humeral diaphysis, mid position of clavicle and the body of the scapula are ossified – the rest are essentially cartilage.

The proximal humerus has three ossification centres:

  • Head – 1 year of age
  • Greater tubercle – 3 years
  • Lesser tubercle – 5 years

  • The scapula has 7 secondary ossification centres. 
Ossification centres of the scapula

Look carefully for the following two – if they appear early they may be the only sign of an avulsion fracture:

  • The sub-coracoid ossificiation centre appears between 8 to 10 years and completely fuses between 16 and 17 years of age, forming the upper third of the glenoid articular surface . If it appears before the age of 8, this may indicate an avulsion (pulled by the long head of biceps at its attachment to the superior glenoid). 
  • The inferior glenoid ossification centre, appears at the lower two-thirds of the glenoid articular surface. It grows and fuses to form a horseshoe shaped epiphysis that combines with glenoid rim and sub-coracoid ossification centre. This appears between 14 and 15 years (although sometimes as young as 11 years), with complete fusion by 17 to 18 years. It can be difficult to view on standard radiographs but sometimes it can be seen on the Grashey (AP oblique) view 

A top tip: If you are unsure whether what you are seeing is an avulsion fracture or a simple ossification centre, then press directly on the patient where the fragment is. If this isn’t painful then it is highly likely to be an ossification centre and not an avulsion. Range of movement is another great give-away – it is quite hard to have an avulsion fracture and intact range of movement! If in doubt, speak to a friendly radiologist (in hours) or be conservative and place in an arm sling and bring back to clinic (out of hours) for re-assessment (when the x-ray will have been reported).

Don’t forget the other bones that don’t make up the shoulder. Have a look for rib fractures, and if you see old healing rib fractures then consider non accidental injury.

C – Connections & Connective Tissue

Are all the bits connected to where they should be? Ask yourself a few questions when you’re looking at the different joints.

Glenohumeral joint:

  • Do the articular surfaces of the humerus and glenoid have 2 parallel lines with an even joint space?
  • Does the humeral head sit evenly on the glenoid in all views?
  • Does the humeral head sit adjacent to the glenoid on the AP view? Does it sit over the glenoid on the Y view? If the answers to these questions are no, and instead the humeral head is lying under the coracoid process, this indicates an anterior shoulder dislocation

Anterior Shoulder Dislocation (AP and Y views).The humeral head is located beneath the coracoid on the AP view and no longer located centrally on the Y view. In addition there is flattening of the humeral head suggesting a Hill Sachs lesion (more on this in the upcoming shoulder dislocation post)

  • Has the humeral head lost its characteristic walking stick appearance on the AP view? Does it instead look rounder, like a light bulb? If the answer to these questions is yes, this suggests a posterior shoulder dislocation.
  • Is there a joint effusion or lipohaemarthorsis present? This could indicate an intra-articular fracture of the glenoid or the humeral head. 
Case courtesy of Dr Garth Kruger, Radiopaedia.org. From the case rID: 21129

Acromioclavicular (AC) joint:

  • Does the bottom of the acromion lines up with the bottom of the distal clavicle? If there’s a step, think clavicle fracture or physeal injury
Normal alignment of the AC joint
  • Is there widening of the acromioclavicular joint (normal is 5-8mm) or coracoclavicular distance (normal is 10-13mm)? A widened AC joint > 8mm suggests an AC ligament rupture. If the coracoclavicular (CC)  distance is >13 mm consider CC ligament rupture. If you’re unsure, get weighted views of both AC or CC joints to compare each side (literally with the child holding weights in each hand to stress the joints).
AP view of shoulder

D – Don’t forget the other tissues

Always look around the area to look for foreign bodies or subcutaneous emphysema indicating a pneumothorax or pneumomediastinum. If there are, then a dedicated chest x-ray should be performed.

And finally, although the above may seem complicated, realistically common things are common.

  • Clavicle Fractures. By far the most common. 80% are mid-shaft and occur following a fall onto the outstretched hand or shoulder or direct trauma from a seatbelt or during sport.
  • Proximal humeral fractures. These occur in older children. 
  • Anterior shoulder dislocation. Usually in older children playing sports. Falls result in forced ABDuction, external rotation, and extension. Account for 95% of shoulder dislocations. 

Don’t miss

  • Acromioclavicular Joint injuries – widening or step at acromioclavicular joint and/or increased coraco-clavicular distance. 
  • Rib fractures – healing rib fracture? Consider NAI

References

  1. JS. Zember, ZS Rosenberg, S. Kwong, SP. Kothary, MA. Bedoya. Normal Skeletal Maturation and Imaging Pitfalls in the Pediatric Shoulder.  Radiographics. 2015 Jul-Aug;35(4):1108-22
  2. https://radiopaedia.org/articles/paediatric-shoulder-radiograph-an-approach

Soft tissue knee injuries

Cite this article as:
Lisa Dann. Soft tissue knee injuries, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.25908

Sam, a 12-year-old boy, presents to your department after a soccer blitz. He was tackled, heard a pop, and now can’t weight bear on his right knee.

As popularity and intensity of children’s sports increases there are increased demands placed on children and adolescents. This has resulted in an increased presentation of children like Sam. They can present with knee pain that is traumatic or atraumatic, acute or chronic. Paediatric patients are particularly vulnerable to overuse injuries involving the physes and apophyses due to their inherent weakness (see post, hyperlink article on fractures around knee).

Along with these there has also been an increase in soft tissue injuries. These are seen more commonly in older children/adolescents as their bones become stronger and are less likely to fracture with age.

History/examination

Important points to note on the history include:

  • If there was clear onset of pain
  • Traumatic or atraumatic
  • Duration of pain
  • Previous injury/surgery
  • Site of the pain (try be as specific as possible)
  • Severity of pain
  • Nocturnal pain
  • Systemic symptoms
  • Associated swelling (intermittent or progressive)
  • Contralateral injuries (may result in abnormal gait placing additional pressure on knee)
  • Hip or back pain

Recalling the anatomy of the knee makes evaluating the site of pain easier.  The following make up the knee and all can be can be injured/inflamed and cause pain.

  1. Bones around knee – femur ends at lateral and medial condyles which articulates with tibial plateau and anteriorly the patella unsheathed in the patellar tendon.
  2. Ligaments – anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial and lateral collateral ligaments.
  3. Meniscus – medial and lateral menisci act as shock absorbers and interdigitate into the ACL and PCL for more stability.
  4. Bursae – supra-patellar bursa, infra-patellar bursa, pre-patellar bursa, and pes anserine bursa (medial aspect of knee).
  5. Tendons – quadriceps tendon (inserts into patella), patellar tendon (inserts into tibial tuberosity)
  6. Other – iliotibial band (fibrous support of fascia lata originating at the external lip of iliac crest and inserting into the lateral condyle of the tibia).

Examination in the acute setting is often difficult and may be limited. This is due to swelling, pain and anxiety. Try your best to be as detailed as possible but ensure you note any red flags on examination. These are:

  • Inability to do straight leg raise (extensor mechanism rupture)
  • Ligamentous laxity
  • Catching, locking or giving away (meniscal injury)
  • Inability to fully straighten the knee

After a thorough history and examination you discover he was tackled and the other player’s foot landed on the lateral aspect of his knee. On examination you find a swelling on medial aspect of the knee and laxity of the medial collateral ligament when valgus stress is placed on the right knee.  You clinically diagnose a medial collateral ligament injury. He is placed in a brace and referred to orthopaedic clinic.

Injured ligaments are considered “sprains” and are graded on a severity scale.

  • Grade 1 sprains: The ligament is mildly damaged. It has been slightly stretched, but is still able to help keep the knee joint stable.
  • Grade 2 sprains: The ligament has been stretched to the point where it becomes loose. This is often referred to as a partial tear of the ligament.
  • Grade 3 sprains: This type of sprain is most commonly referred to as a complete tear of the ligament. The ligament has been split into two pieces, and the knee joint is unstable.

Ligament specific examinations:

  • Anterior and posterior drawer tests – asses anterior and posterior cruciate ligament integrity.
  • Lachman test – assesses ACL integrity. Most sensitive test for ACL rupture. Non-dominant hand cups and support knee. Ensure quads and hip flexors relaxed for it to work. Dominant hand grasps proximal tibia, knee flexed at 20-30 degrees. Pull sharply. Tibia shouldn’t move much and should have distinct end point.
  • Posterior sag test – patient supine, hip flexed at 45 degrees and knee at 90 degree. Look at knee from lateral position. If PCL damaged you’ll see tibia sagging posteriorly.
  • Varus and valgus stresses – assess integrity of medial and lateral collateral ligaments. Compare both sides for laxity.

Management:

  • Unstable joints require a thorough examination of neurovascular status, orthopaedic consultation and very close follow up.
  • ACL tears often have poor healing abilities and may require surgical repair if injury is significant.
  • PCL is much better at healing itself than ACL and low grade tears are managed non-operatively with grade 3 or higher needing reconstruction.
  • Collateral ligament injuries have good healing potential so rest, ice, bracing and slow advancement of range of motion is the management primarily undertaken.

A short while later one of Sam’s team mates, Patrick, presents to ED. He was also playing in the soccer blitz. He got sudden knee pain when turning and his knee is now locked. Following assessment you suspect a meniscal injury.

Meniscal injuries

Meniscal injuries can be traumatic or atraumatic. Suspect if the knee is locked, there was a twisting mechanism, a tearing sensation, or an effusion.

Specific examinations include:

  • McMurray test – patient supine, hip and knee flexed at 90 degrees. Non-dominant hand placed over joint line. Dominant hand grasps patient’s heel and internally and externally rotates tibia exerting valgus and varus forces while extending the leg. This helps to grind on either the medial or lateral menisci. Pain, popping or clicking is a positive test.
  • Appley compression test – the patient lies prone with the knee bent at 90 degrees. The examiner rotates the leg externally and internally several times under simultaneous vertical pressure. A painful pop can point to a meniscal injury.

Treatment includes physiotherapy to compensate for the tear but surgical management may ultimately be required. Follow up with orthopaedics is required.

Patrick’s sister was also brought for review. She is 15 years old and has been having intermittent knee pain for the last few months but it gets much worse after she plays sports. She also says it really hurt her after the cinema yesterday. You suspect patellofemoral pain syndrome.

Patellofemoral pain syndrome (PFPS)

The pain is frequently described as anterior but is often poorly localised. It may feel like it’s “under” or “around” the patella. Pain is classically exacerbated by prolonged periods of sitting, use of stairs and squatting (theatre sign). Pain may be present for several weeks, exacerbated by activity and relieved after periods of rest. Frequently there is a deterioration in sports performance or inability to participate prompts patients to seek medical review.

Clinical examination should look for gait abnormalities, increased lumbar lordosis, and any asymmetry in hips or lower extremity. It is not uncommon to have reduced flexibility in the hamstrings or quadriceps.

Clarkes sign – positive in PFPS. Patient supine, knee extended. Grab the superior pole to the patella with thumb and index finger and have the patient activate the quadriceps while you inhibit the patellar movement. This causes grinding of the articular surface between patella and femur. Pain is indicative of PFPS.

Investigations are not routinely required. However, knee radiographs may assist in ruling out other conditions such as osteochondritis dissecans of the knee/patella and stress fractures of the patella. Radiographic imaging in PFPS is not diagnostic. It is necessary to combine any findings with your clinical examination.

Management of this is conservative as it is a self-resolving condition. It typically resolves over weeks to months but has been known to take up to two years for complete resolution of symptoms. Management involves reduction in activity (complete cessation usually not required), ice, rest, anti-inflammatory for pain control (short term use), avoidance of aggravating exercises (e.g. squatting) and some find relief with taping/knee-braces. Exercises that strengthen and increase flexibility of the quadriceps, hamstrings, soleus and gastrocnemius muscles are also recommended.

Further specific examinations and possible causes of non-specific knee pain

  • Ask the patient to tighten knee and palpate the quadriceps tendon at superior pole (tenderness indicates possible tendonitis), straight leg raise (assessing quadriceps strength and integrity).
  • Palpate body of patella for tenderness (Sinding-Larsen syndrome) and then patellar tendon and tibial tuberosity (Osgood-Schlatter syndrome).
  • Palpate the medial side of patella (possible inflamed medial plica band) and also palpate the proximal tibial surface (medial anserine bursa- pain, swelling, tenderness may indicate bursitis).
  • Feel under the patella (tenderness on articular surface could indicate patella-femoral syndrome).
  • Lateral – assess for patellar instability (need quadriceps relaxed and knee flexed at 30 degrees). Apprehension indicates patellar laxity and potentially previous dislocation.
  • Joint line – bend the knee and palpate either side slowly and carefully. Try to localize as much as possible. Tenderness may indicate a meniscal tear.
  • Hamstring muscles: With the knee flexed palpate the hamstring muscles. Laterally is the biceps femoris and medially semi-tendinosus and semi-membranosus. Chronic tightness may be the cause of knee pain.
  • Patellar ballottement- effusion

Bottom line

A thorough history and examination can greatly assist in reaching the diagnosis. A correct diagnosis helps to properly counsel patients and appropriately manage their expectations. Without proper treatment, knee injuries can lead to chronic knee problems, early onset arthritis, injury to surrounding tissues, and prolonged healing times. Missed injuries can also cause recurrent cartilage damage, instability in the knee, and unnecessary time away from physical activity. It is our duty to diagnose these injuries in a timely manner and provide appropriate advice, support and follow up.

Below is a useful table outlining the causes of intrinsic knee pain, separated by site of pain on examination (table 1).

References

Finlayson C. Knee injuries in the young athlete. Pediatr Ann. 2014;

Brooke Pengel K. Common overuse injuries in the young athlete. Pediatr Ann. 2014;

Beck NA, Patel NM, Ganley TJ. The pediatric knee: Current concepts in sports medicine. J Pediatr Orthop Part B. 2014. doi:10.1097/BPB.0b013e3283655c94.

Calmbach WL, Hutchens M. Evaluation of patients presenting with knee pain. Part II Am Physician. 2003.

PEM Playbook Knee Pain podcast https://pemplaybook.org/podcast/knee-pain/

Tillaux fractures

Cite this article as:
Tadgh Moriarty. Tillaux fractures, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.26111

Jenny is a 14-year-old girl who was at soccer training when she had an awkward injury to her left ankle. She was running for the ball when her foot caught in a clump of grass and she externally rotated her leg while her foot remained planted. While the pain was instantaneous, there was very little swelling. Her father has brought her in remarking that ‘it’s probably just a sprain’. But as you call her down to the cubicle to examine her, you think there might be more to it.

Incidence

Tillaux fractures are a type of ‘transitional’ ankle fracture which occur almost exclusively in adolescents. These occur during the unique closure pattern of the distal tibial physis. This closes over an eighteen-month period; first in the middle, then medially and finally laterally. During the closure, this area is vulnerable to these distinctive transitional fractures; the triplane fracture and the Tillaux fracture.

These fractures account for roughly 3% of paediatric ankle fractures. They are seen more commonly in females and tend to occur at slightly different ages depending on gender. It tends to occur later than a triplane fracture; between 12-14 years in girls and 15-18 years in boys.

Mechanism

This Salter-Harris 3 fracture occurs at the anterolateral distal tibial epiphysis. It tends to cause avulsion of the tibial fragment by the tibiofibular ligament; this strong ligament extends from the anterior aspect of the lateral distal tibial epiphysis to the anterior aspect of the fibula. The lack of a fracture through the coronal plane distinguishes this injury from that of a triplane fracture.

This injury pattern occurs usually through a combination of supination and external rotation of the foot in relation to the leg. It usually occurs through low-velocity trauma for example in skateboard accidents or sports with a sliding injury.

Presentation

These injuries are almost exclusively seen in adolescents. Similar to most ankle injuries there will be a history of trauma, symptoms of pain, swelling, and an inability (or painful) weight-bearing.

The clinical exam often reveals localised tenderness to the anterior joint line. This contrasts with a sprain where the tenderness is usually below the joint line. Marked displacement is prevented by the fibula.

Imaging

Do not be misled by lack of swelling – have a low threshold to image injuries which present with an inability to weight bear (at least four steps). When requesting an ankle x-ray AP and lateral views will be included as standard – if you have a high index of suspicion for a Tillaux fracture ask for an oblique or ‘mortise’ view – this can improve your detection by avoiding the obstructed view through the fibula and potentially making the subtle fracture more apparent.

This injury can sometimes have an associated ipsilateral tibial shaft fracture or a proximal fibular injury. During your clinical exam if you illicit tenderness proximal to the ankle, then include a full-length tibia/fibula x-ray with your request.

Does this injury require a CT? Perhaps! See the controversy section below for a more thorough explanation. CT is generally only required by the orthopaedic team to assist with surgical planning.

Image courtesy of Orthobullets.com

Image showing CT scan of same fracture with >2mm displacement courtesy of Orthobullets.com

This injury however often requires a CT scan to assist the orthopaedic team in deciding between conservative and operative management.

A study by Horn et al showed CT as being more sensitive than plain film at detecting fractures with greater than 2mm displacement (the cut-off point adopted for operative fixation).

Treatment

These fractures are important as they involve the weight-bearing surface and can lead to significant morbidity if missed. The treatment of these injuries is not uniform – different methods and cut-offs are described in different case reports and case series. Having that said the current marker for operative versus conservative treatment is the degree of displacement of the fracture fragment.

Those with < 2mm displacement can generally be treated conservatively. This usually involves an above-knee cast for up to 4 weeks (to control the rotational component) followed by either a walker boot or below-knee cast for a further 2-4 weeks. This conservative approach is well documented in having a satisfactory outcome.

Those with displacement >2mm generally require intervention to ensure articular congruity of the joint surface is restored. Intervention can occur in different forms; some may be suitable for a closed reduction under procedural sedation (or general anaesthetic). Different reduction techniques exist however longitudinal traction while the knee is flexed followed by internally rotating a maximally dorsiflexed ankle seems to achieve greater anatomic reduction. A review by Lurie et al concluded those left with a residual gap of more than 2.5mm led to worse functional outcomes. Therefore post-reduction radiological confirmation should show minimal displacement (the figure of <2mm tends to be favoured in the literature) otherwise operative intervention is required. Many orthopaedic surgeons favour CT as the post-reduction imaging modality of choice and then follow this reduction with serial radiographs to confirm maintenance of the reduction over time.

Operative intervention can involve K-wire insertion, use of lag screws or a novel technique involving percutaneously inserted wires with arthroscopic or radiological guidance. This new technique is seen as less invasive and as-effective but is technically complex and demanding. If this injury presents with a neurovascular compromise or critical skin then emergent surgery is indicated. This is, thankfully, rare.

What to tell the patient

Recovery: Both operative and conservative measures tend to require up to 8 weeks of immobilisation followed by a rehab phase. This phase will vary depending on the age of the patient. Most patients have a good outcome with 86% having complete recovery and no sequelae. Very few will have pain or limitation of ankle movement. Late presentation and a non-anatomical reduction will increase the risk of this.

Complications

These are less common than other ankle fractures; delayed or malunion, osteonecrosis of the distal tibial epiphysis, premature growth arrest and compartment syndrome are all very rare occurrences. Early-onset arthritis can occur, those with late presentations or missed fractures are more at risk.

Operative intervention carries the additional (albeit small) risk of physeal damage from direct pressure by blunt instruments and inadvertent damage to the superficial peroneal nerve.

Controversies

Radiological evaluation remains controversial. Plain x-ray usually identifies the transitional fracture, and the degree of displacement. However, CT (ideally with 3D reconstruction) is more accurate in estimating the degree of displacement and fracture separation.

Case courtesy of Dr Yasser Asiri, Radiopaedia.org. From the case rID: 64778

CT can help in identifying the number and position of fragments. The issue of whether CT or MRI alters treatment or prognosis when compared with plain X-ray has not been fully investigated. Limited research has been carried out on whether CT, with its greater accuracy, actually affects treatment or patient outcome. Liporace et al in 2012 found that interobserver and intra-observer agreements about primary treatment plans did not differ significantly between radiography alone and radiography plus CT. This showed that the addition of CT did not actually change the impression about the degree of displacement in each case. This raises the question as to whether CT really alters outcomes despite having perceived greater benefits.

Jenny is found to have significant tenderness about her distal tibia on exam and an x-ray confirms a Tillaux fracture which is minimally displaced. She is placed in an above-knee backslab and referred to the orthopaedic fracture clinic. She is left disappointed that she will miss this season’s matches, but thankfully you didn’t misdiagnose this as a sprain!

References

Orthobullets.com/paediatrics/4028/tillaux-fractures

Wheelers textbook of orthopaedics (updated 2015) Clifford J Wheeless Tintinnali 7th Ed

Tiefenboeck TM, Binder H, Joestil J et al. Displaced juvenile Tillaux fractures: surgical treatment and outcome. Wien Klin Wochenschr. 2017; 129 (5-6):169-175

Rosenbaum AJ, DiPreta JA, Uhl RL. Review of distal tibial epiphysis transitional fractures. Orthopaedics. 2012;35(12):1046-1049

Horn BD, Cristina K, Krug M, Pizzutillo PD, MacEwen GD. Radiologic evaluation of juvenile Tillaux fractures of the distal tibia. J Pediatr Orthopaedics. 2001; 21(2): 162-4

Cooperman DR, Spiegel PG, Laros GS. Tibial fractures involving the ankle in children. The so-called triplane epiphyseal fracture. J Bone Joint Surg Am. 1978 Dec. 60 (8):1040-6

Panagopoulos A, van Niekerk L. Arthroscopic assisted reduction and fixation of a juvenile Tillaux fracture. Knee Surg Sports Traumatol Arthrosc 2007;15:415-417

Manderson EL, Ollivierre CO. Closed anatomic reduction of a juvenile tillaux fracture by dorsiflexion of the ankle. A case report. Clin Orthop Relat Res. 1992 Mar. (276):262-6.

Crawford AH Triplane and Tillaux fractres: is a 2mm residual gap acceptable. J Pediatr Orthop. 2012 Jun;32 Suppl1:S69-73

Schlesinger I, Wedge JH. Percutaneous reduction and fixation of displaced juvenile Tillaux fractures: a new surgical technique. J Pediatr Orthopaedics. 1993;13:389-391

Stefanich RJ, Lozman J. The juvenile fracture of Tillaux. Clin Orthopaedics Relat Res. 1986;210:219-227

Kaya A, Altay T, Ozturk H, Karapinar L. Open reduction and internal fixation in displaced juvenile Tillaux fractures. Injury 2007;38:201-205

Choudhry IK, Wall EJ, Eismann EA. Crawford AH, Wilson I. Functional outcome analysis of triplane and tillaux fractyres after closed reduction and percutaneous fixation. J Pediatr Orthop. 2014;34:139-43

Jennings MM, Layaway P, Schubert JM. Arthroscopic assisted fixation of juvenile intra-articular epiphyseal ankle fractures. J Foot Ankle Surg 2007;46: 376-386

Rockwood and Wilkin’s fractures in children. 6th Edition.2006

Kim JR, Song KH, Song KJ, Lee HS. Treatment outcomes of triplane and Tillaux fractures of the ankle in adolescence. Clin Orthop Surg. 2010 Mar. 2 (1):34-8

Haapamaki VV, Kiuru MJ, Koskinen SK. Ankle and foot injuries: analysis of MDCT findings. AJR Am J Roentgenol. 2004 Sep. 183 (3):615-22

Charlton M, Costello R, Mooney JF et al. Ankle joint biomechanics following transepiphyseal screw fixation of the distal tibia. J Pediatr Orthopaedics. 2005;25: 635-640

Liporace FA, Yoon RS, Kubiak EN, Parisi DM, Koval KJ, Feldman DS, et al. Does adding computed tomography change the diagnosis and treatment of Tillaux and triplane pediatric ankle fractures?. Orthopedics. 2012 Feb 17. 35 (2):e208-12

Lurie B, Van Rysselberghe N, Pennock AT, Upsani VV. Functional outcomes of Tillaux and triplane fractures with 2-5millimetres of intra articluations gap. J Bone Joint Surg Am. 2020;102:679-686

Rapariz AJ, Avocets G, Gonzalez-Herman P, Texas et al. Distal tibial triplane fractures: long term follow up. J Pediatr Orthopaedics. 1996; 16: 113-118.

Maxilla and zygoma injuries

Cite this article as:
Jessie Lynch. Maxilla and zygoma injuries, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.21700

A 2-year-old child called Lucy is brought to your ED by ambulance. She was the right-sided rear seat passenger in a high-speed head-on road traffic collision. The driver of the other car died on impact. She was restrained in a car seat, however, the seatbelt holding the car seat in place had broken and the car seat was thrown forward. She had a 4-minute episode of loss of consciousness. She had a GCS of 14/15 on arrival, she was maintaining her airway and she was haemodynamically stable. She had significant swelling, bruising, and superficial abrasions to the right side of her face, and her right eye was swollen shut.

Facial injuries in children are relatively common. The most common facial injuries encountered in a paediatric population are dental trauma, oral trauma and facial lacerations. Facial fractures, however, are exceedingly rare in this population, with an incidence of <15% in those under the age of 16 years, and only 0.87% – 1% in those under the age of 5 years.

There are a number of factors which make children less prone to facial fractures. These include:

  • Retruded position of the midface relative to the skull
  • Structural stability increased by the presence of tooth buds within maxilla and mandible and lack of sinus pneumatisation
  • A thick layer of adipose tissue coverage
  • More elastic bones and flexible suture lines
  • High level of adult supervision

These factors also make children more prone to greenstick and minimally displaced fractures as opposed to comminuted or complex fractures. These factors become less significant as the child grows older.

History

Common causes of facial fractures include falls, road traffic collisions, sports-related injuries and, less commonly, interpersonal violence. 2.3% of victims of non-accidental injury have facial fractures and the possibility of this should always be taken into account.

Examination

The presence of a midfacial fracture in a child implies that a significant velocity impact has occurred. 40% of children with a midfacial fracture have an associated skull fracture, and associated cervical spine injury is also common. The primary survey should be undertaken following APLS protocols, with particular attention paid to cervical spine immobilisation and airway management. A detailed craniomaxillofacial examination should be performed as part of the secondary survey, after initial stabilisation.

Fractures of different parts of the face will lead to different clinical signs.

Zygomatic arch and zygomaticomaxillary complex (ZMC) 

The zygomaticomaxillary complex (ZMC) is made up of four parts:

  • lateral orbital wall
  • zygomatic-maxillary junction
  • zygomatic arch
  • orbital floor

An approach to the assessment of ZMC fractures includes:

  • Inspect the orbit. There may be periorbital swelling or ecchymosis, enophthalmos, subconjunctival haemorrhage and diplopia (due to extraocular muscle dysfunction). The orbital examination should also include visual acuity, visual fields and extraocular muscle function.
  • Palpate the facial bones. There may be a palpable depression or step in the infraorbital rim or zygomatic arch as well as tenderness or widening of the frontozygomatic suture.
  • Oral assessment. There may be trismus (lock jaw) and bruising and tenderness of the upper buccal sulcus.
  • Infraorbital nerve assessment, documenting any paraesthesia.

Maxilla

Maxillary fractures are classified according to the Le Fort classification system*

  1. Le Fort I: A horizontal fracture through the floor of maxillary sinuses with the teeth contained within the detached fragment. Only palate moves.
  2. Le Fort II: A fracture which can be one-sided or bilateral fracture through the maxilla extending into the floor of the orbit, the nasal cavity and hard palate. This results in a pyramidal shaped fracture.
  3. Le Fort III: A fracture through the orbits in which the entire maxilla and one or more facial bones, the entire midface, becomes separated from the base of the skull. This is called craniofacial disjunction.

*Rene Le Fort was a French physician at the turn of the 20th century. He discovered that the midface tended to fracture in three different ways when traumatising cadavers in quite gruesome, but scientifically important, ways.

Clinical signs of Le Fort fractures are much the same signs as for ZMC and zygomatic arch fractures but signs are, for the most part, bilateral. Facial asymmetry, flattening or elongation may be evident in older children.

Management

Manage pain with non-pharmacologic and pharmacological measures. Oral and intravenous analgesia may be required but avoid intranasal analgesia in case of fracture.

Investigations

Facial bone x-rays may give you some valuable information, but the caveat is that they can be difficult to interpret in children. If you have a high clinical suspicion of a facial bone fracture, a CT scan is the imaging modality of choice and can be argued to be the cornerstone of investigation for facial bone fractures in children.

A chest x-ray may be indicated to exclude aspiration of foreign bodies or dental fragments.

Specific treatment

All fractures should be discussed with the local maxillofacial service and/or ophthalmology if orbital involvement is present. A formal ophthalmological review should be carried out as early as is feasible in children with any suspected midfacial fracture.

Most greenstick or minimally displaced fractures can be managed conservatively with soft diet, advice not to blow nose or hold nose closed while sneezing, antibiotic prophylaxis and a nasal decongestant.

There is no clear consensus on the best choice of antibiotic for facial fractures, and there is much variety among papers. The most commonly used would appear to be co-amoxiclav, cefuroxime, and clindamycin in penicillin-allergic patients.

Surgical intervention range from an intraoral approach for minimally displaced zygoma fractures to open reduction and internal fixation for comminuted fractures.

Potential complications, including mal/non-union, are less common in paediatric patients than in adults.

The do not miss bits

  • Reduced or lost vision, severe eye pain or proptosis of the globe are all features of retro-orbital haemorrhage, an ophthalmological emergency which requires immediate surgical intervention to avoid permanent blindness.
  • Although facial fractures are rare in children they have the potential to cause significant disruption to future growth, function & cosmesis and thus it is vital that they are recognised.
  • It takes significant velocity to cause a facial fracture in a child, and examination & investigations must be thorough to identify any other potential injuries. Consideration should be given to the possibility of non-accidental injury when assessing a child with a facial fracture.

Lucy’s CT brain & c-spine showed no significant abnormalities. CT facial bones showed a minimally displaced fracture of the frontal process of the right zygoma. She was reviewed by ophthalmology & maxillofacial specialists & was treated conservatively with oral antibiotics with a soft diet until her fracture had healed.

Selected references

Alcalá-Galiano A,  Arribas-García IJ,  Martín-Pérez MA, et al. Paediatric Facial Fractures: Children Are Not Just Small Adults. RadioGraphics. 2008; 28:441-461

Kumaraswamy SV, Madan N, Keerthi R, Singh DS. Paediatric injuries in maxillofacial trauma: a 5 year study. J Maxillofac Oral Surg. 2009; 8(2):150-153

Braun TL, Xue AS, Maricevich RS. Differences in the Management of Paediatric Facial Trauma. Semin Plast Surg. 2017;31:118-122

Cole P, Kaufman Y, Hollier LH. Managing the Pediatric Facial Fracture. Craniomaxillofac Trauma Reconstruction. 2009;2:77-84

Kidd AJ, Beattie TF, Campbell-Hewson G. Facial injury patterns in a UK paediatric population aged under 13 years. Emergency Medicine Journal. 2010;27:603-606

Mundinger GS, Borsuk DE, Okhah Z, et al. Antibiotics and facial fractures: evidence-based recommendations compared with experience-based practice. Craniomaxillofac Trauma Reconstr. 2015;8(1):64–78

The Royal Children’s Hospital Melbourne.The Paediatric Trauma Manual. Maxillofacial Injury. https://www.rch.org.au/trauma-service/manual/maxillofacial-injury/

Finger Tips – tendons and ligaments

Cite this article as:
Sinead Fox + Kate Jackson. Finger Tips – tendons and ligaments, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.25422

Little fingers get everywhere, and injuries are common. The mechanism of injury tends to be age-dependent with the under-fives magnetically drawn to door hinges and the over-fives more likely to do some damage during higher impact sport. Below are a few common injuries of the tendons and collateral ligaments of the fingers that you might come across in PED.

  • Ensure adequate analgesia prior to assessment, occasionally the administration of a local anaesthetic is required… don’t forget bubbles too!
  • As tendon/ligament injuries may not occur in isolation, an assessment must include inspection, palpation, (look, feel, move!), assessment of vascular structures, and testing of motor and sensory functions.
  • Children typically tend to display hand dominance between the ages of 2-4 years old; if the child is old enough make sure to record hand dominance in the medical or nursing notes.
  • In older children/adolescents document details of sport participation/ hobbies/professional goals as these may be taken into account by hand surgeons when considering treatment options.

Part 1: Flexor tendon injuries

Anatomy

There are two flexor tendons for each finger and one for the thumb.

The flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) are the flexor tendons of the fingers, and the flexor pollicis longus (FPL) is the only thumb flexor.

The flexor tendons travel distally from the forearm through the carpal tunnel and are named based on the forearm muscles from which they arise.

The flexor digitorum profundus (think profound i.e. deep) arise from the deeper layer of the flexor muscles. The flexor pollicis longus tendon of the thumb also arises from the deeper muscle layer. The flexor digitorum superficialis (think superficial) is the continuation of the more superficial layer.

  • FDP inserts at the base of the distal phalanx and flexes the DIP joint (tip: FDP is at the point of the finger).
  • The FDS tendon divides into two slips that wrap around the FDP to insert into the sides of the middle phalanx. FDS flexes the PIP joint.

The Pulley System

The flexor tendons are enclosed in a synovial sheath that lubricates them and minimizes friction.

It is organized into segments of transverse fibres forming annular pulleys (annular means ring-like; think of the ring-like lesions of annular eczema) and oblique fibres comprising cruciate pulleys (cruciate means crossed, like the cruciate ligaments of the knees).

There are three cruciate pulleys (C1-3) and five annular pulleys (A1-5) pulleys. These pulleys keep the flexor tendons close to the bone and prevent bowstringing of the tendon.

The pulley system

Evaluation

Closed flexor tendon injuries are usually caused by forced extension of the finger in active flexion. The child may present with reduced flexion of the finger or pain when bending the finger and there may be localized swelling or open wounds.

The FDS and FDP tendons should be tested individually; it is not enough just to observe the child make a fist as tendon injuries can be easily overlooked or missed.

  • To check FDS function, hold all adjacent fingers in extension and then release the finger you want to assess. Ask the child to flex the free digit at the PIP joint.
  • To examine the FDP, hold the middle phalanx in extension and ask the child to flex the DIP joint.
Testing FDP
Testing FDS

Examination Pearls

Tendon function can be difficult to assess in a very young or uncooperative child. In these circumstances observation of digital cascade and wrist tenodesis can be useful physical examination tools to assess tendon integrity of hand and fingers.

  1. Digital Cascade

When the child’s hand is in a resting position, the fingers should have a natural cascade of progressively increasing flexion from the index finger through to the little finger.

The digital cascade
  1. Wrist Tenodesis

Squeezing the forearm muscles while observing the fingers can also be used to assess flexor tendon continuity. If flexor tendons are intact, the child’s fingers should flex when the forearm muscles are squeezed.

Wrist tenodesis

A: Extending the wrist flexes the fingers. With intact flexor tendons and a relaxed or distracted patient, passive wrist extension results in finger flexion. If flexor tendons are damaged then the injured finger(s) will rest in an extended position when the wrist is extended.

B: Flexing the wrist extends the fingers. Similarly, with intact extensor tendons, passive wrist flexion results in finger extension. If the extensor tendons are damaged, the injured finger(s) will rest in a flexed position when the wrist is flexed.

Wound Exploration

It is important to remember that tendons move; looking into a wound and seeing an intact tendon does not exclude a tendon injury. If the wound is sustained while the finger is flexed and the finger is examined while it is extended, the level of the tendon injury will not correspond to the level of the skin laceration. Therefore it is important to ask the parent or older child/adolescent about finger position at the time of the injury and put the injured digit through a passive range of movement while examining the wound.  If you are in doubt or cannot rule out a tendon injury refer the patient to the local hand surgery team.

Classification

The sites of the flexor tendon injuries are divided into five zones.

*The term ‘No Man’s Land’ was coined by hand surgeon Mr. Sterling Bunnell in 1918 because at that time it was felt no man (or woman) should attempt repair within this zone due to the complexities of the anatomy and risk of adverse outcomes. While this belief is no longer a common practice, it highlights the intricacies of surgical repair within this zone.

Jersey finger (Zone 1 injury)

Juno is a fifteen-year-old girl who is attending ED with an injury to her left ring finger. She was playing rugby earlier today and her hand got caught in another player’s jersey during a tackle. On examination, you note swelling, bruising, and tenderness to the volar base (on the palmar side) of her distal phalanx on her left ring finger. When you lie her left hand flat on a table with the palm facing upwards and hold the middle phalanx of her ring finger in extension she is unable to flex her distal phalanx at the DIP joint. She also can’t bend the DIP joint when trying to make a fist. You correctly identify that she has an injury to her FDP tendon and make the diagnosis of Jersey Finger. You send Juno to X-ray to assess for a fracture.

Mechanism

Disruption of the FDP tendon is known as Jersey finger. This injury is caused by the forced extension of the DIP joint during active flexion. It commonly occurs when an athlete’s finger catches in another player’s jersey, usually while playing a tackling sport such as rugby or American football. For those that prefer more solo pursuits, it can also be caused by an overly tight crimp grip in climbers.

 

Presentation

A patient with Jersey finger may present with pain and swelling to the volar (the palmar) aspect of the DIP joint and the finger will be extended at rest. The ring finger is commonly affected. The integrity of the FDP should be evaluated as outlined above. An injured FDP will produce very restricted or no movement. An x-ray should be performed to rule out an avulsion fracture at the volar base of the distal phalanx.

X-ray demonstrating an avulsion fracture at the base of the distal phalanx of the little finger in Jersey Finger. Case courtesy of Dr Ian Bickle, Radiopaedia.org. From the case rID: 26251
Jersey finger – disruption of insertion of FDP

Treatment

Early referral to a hand surgeon for assessment and appropriate treatment is paramount.

Operative: The majority of these cases require surgical intervention to reattach the tendon to prevent tendon retraction and optimize function. The prognosis for patients with jersey finger worsens if treatment is delayed and severe tendon retraction is present.

Non- Operative: A partial tear may be managed conservatively (splinting, NSAIDS, physiotherapy). However, from a PED perspective, these injuries should be considered surgical cases until deemed otherwise by a hand specialist.

You do not identify a fracture on Juno’s X-ray and you refer her to the Plastic Surgery team for prompt review as it is possible she may require surgery to repair her FDP tendon.

…A quick overview of Trigger thumb

Trigger thumb, although uncommon, maybe a reason for presentation to the PED, typically when a child is 2 years old. Paediatric Trigger thumb results from a mismatch in the size of the Flexor Pollicis Longus (FPL) and the first annular pulley (A1) disrupting normal tendon gliding. Children find it difficult to extend the IP joint of the thumb, with clicking or snapping felt or heard. Some patients even have a fixed flexion deformity at the IP joint. Characteristically, a palpable mass is felt at the level of the MCP joint crease on the volar (palmar) surface of the thumb representing a nodule in the FPL as well as thickening of the flexor tendon sheath. This is commonly referred to as ‘Notta’s Node’.

Its aetiology is poorly understood. Historically, trigger thumb was thought to be congenital, however, this is controversial and an argument exists that trigger thumb is an acquired condition. Diagnosis is usually based on clinical exam. X-rays or alternate imaging is rarely indicated, although parents will occasionally try attribute symptoms to a recent history of trauma. This is usually a red herring!

Paediatric trigger thumb can be managed surgically or conservatively with splinting and a physiotherapy regime – sometimes it can spontaneously resolve, although the spontaneous resolution of paediatric trigger thumb can be less likely after 2 years old. Surgical release of the first annular pulley may be offered as a treatment option to restore thumb IP joint movement if there is a fixed flexion deformity beyond the age of 12 months or if conservative management fails.

 

Part 2: Extensor Tendon Injuries

Anatomy

Distal to the MCP joint, the common extensor tendon divides into three slips: one central and two lateral bands. The central slip inserts at the base of the middle phalanx and the two lateral bands extend along the radial and ulnar margins of the middle phalanx to converge at the distal third of the middle phalanx to form the terminal extensor tendon, which inserts at the base of the distal phalanx. The central slip extends the middle phalanx at the PIP joint level and the terminal extensor tendon extends the DIP joint. The Extensor Pollicis Longus (EPL) extends the thumb at the IP joint.

Extensor tendon anatomy

Evaluation

The extensor tendons are assessed by applying pressure to the dorsum (back) of the finger while the patient is attempting active extension.

Testing extensor tendons

To test the Extensor Pollicis Longus (EPL), ask the patient to place their hand flat on a table and lift up their thumb against resistance.

Testing EPL

Classification

The extensor mechanism can be divided into 9 anatomical zones. Odd-numbered zones are located over joints, and even-numbered zones are located over bones. Tendon injuries can be categorized according to these anatomical zones.

Extensor tendon zones

A little nugget: an easy way to recall the extensor zones is to remember the odd numbers (I, III, and V) are at the joints (DIPJ, PIPJ, and MCPJ).

Injuries in zone 1 (the DIP joint) and zone III (the PIP joint) cause some unique injury patterns which we’ll explore below.

The thumb has a unique classification system as it has one fewer phalanx.

Mallet Finger: zone I injury (Baseball Finger)

Isabelle is an 8-year-old girl who was playing with her twin sister, Sophie, in their bedroom while their Mummy and Daddy were busy working from home in another room. Sophie accidentally closed the bedroom door catching Isabelle’s finger in the hinge side of the door. In ED you see that Isabelle’s right, dominant index finger is bruised and swollen at the DIP joint and there is a superficial abrasion to the dorsum of the DIP joint. Isabelle’s point of maximal tenderness is to the DIP joint. You try your best to assess finger function but Isabelle is crying and says she is too sore to move her fingers. But you note that the index finger appears flexed at the DIP joint and you suspect a Mallet injury. You give Isabelle analgesia and refer her for an x-ray.

Mechanism

Mallet finger is a partial or complete avulsion of the terminal extensor tendon from its insertion on the distal phalanx, commonly resulting from sudden flexion of an extended DIP joint. It can also occur secondary to a crushing mechanism.

Presentation

Mallet finger can be an open or closed injury with or without a fracture. Patients present with a flexion deformity at the distal phalanx and an inability to extend finger at DIP joint. The DIP joint can be swollen and ecchymosed.

Mallet finger

In children, this injury typically occurs due to an avulsion fracture of the distal phalangeal epiphysis, the insertion point of the terminal extensor tendon.

Case courtesy of Dr Hani Salam, Radiopaedia.org. From the case rID: 12227

Classification

Mallet fingers can be described using a classification scheme (I through IV) developed by Doyle (1993).

Classification of Mallet finger

Treatment

Early referral to a hand surgeon for assessment and advice regarding appropriate treatment is essential.

Non-operative: Closed acute injuries with or without fractures can be managed with 6-8 weeks of extension splinting at DIP joint, followed by gentle active flexion ROM.

A 2004 Cochrane review found insufficient evidence to support the use of any particular splint when treating mallet injuries; all achieve similar outcomes. However, patient compliance is vital to a successful outcome.

Operative:

Open injuries are treated by surgical repair.

Closed injuries may be considered for surgical management if there is joint subluxation or an avulsion fracture of more than 30-50% of the articular surface.

Complications: Swan-neck deformity

Correct management of an acute mallet injury is critical as a poorly managed or untreated chronic terminal extensor tendon injury can lead to swan-neck deformity.

Swan-neck deformity is caused by prolonged DIP flexion with dorsal subluxation of lateral bands and PIP joint hyperextension.

It takes a while before Isabelle and her Mum return to the ED from X-ray. Fortunately, the analgesia seems to have had some effect and Isabelle is more relaxed. You review the X-ray and do not identify a fracture. On examination, you confirm there is a flexion deformity at the DIP joint and note that Isabelle is unable to actively extend at the DIP joint. Suspecting a mallet injury, you apply an extension splint and refer Isabelle to plastics. They opt to treat the injury conservatively with an extension splint at the DIP joint for 6 weeks. They give Mum and Isabelle careful advice about compliance with splinting and give her an appointment for follow up in out-patients.

Central Slip Injuries: zone III injury

Michael is a 15-year-old talented basketball player. He was playing in a school league basketball final three days ago, when he felt a sudden sharp pain in his left middle finger after a failed attempt at catching the ball. He played until the end of the game but attended a minor injuries unit the following day as his finger was swollen and painful at the PIP joint. After a normal X-ray, he was diagnosed as having a soft tissue injury and discharged home with his fingers buddy-strapped. However, his pain has not improved and he’s still unable to fully extend his finger at the PIP joint, so his dad brings him to your ED. He has a digital copy of the X-Ray for you to review.

Mechanism

Central slip injuries are extensor tendon injuries at the middle phalanx most often resulting from forced flexion of an extended PIP joint, a mechanism commonly seen in basketball players. Other injuries that can accompany central slip disruption include volar (palmar) dislocations of the PIP joint, dorsal avulsion fractures of the base of the middle phalanx, and lacerations to the dorsal surface of PIP joint.

Presentation

The PIP joint may be swollen and bruised. The area of maximal tenderness is generally over the dorsal aspect of the PIP joint.

Closed central slip injuries can be easily missed or misdiagnosed as a sprain or soft tissue injury as there is no wound and sometimes no abnormality seen on X-ray.

The physical examination can be challenging- some patients have no loss of active extension at the PIP joint as extension is still provided by the lateral bands of the extensor tendon despite the disruption of the central slip. Even when there is a loss of extension, this can be overlooked or attributed to pain. (Don’t forget to provide adequate analgesia prior to assessment!)

These pitfalls can be avoided by maintaining a high index of suspicion for a central slip injury and undertaking a careful examination including Elson’s test to establish the integrity of the central slip, especially in the patient who presents with a painful, swollen PIP joint without gross deformity. Occasionally, ring blocks are required to allow a proper assessment of ROM.

Elson’s Test

  • Ask the patient to bend the affected PIP joint 90° over the edge of a table and ask them to extend the middle phalanx against resistance.
  • If the central slip is intact (negative test), extension is strong and the DIP remains floppy because the extension force is now placed entirely on maintaining extension of the PIP and the lateral bands cannot act distally in this position.
  • When a rupture of the central slip is present (positive test) there will be weak PIP extension, and the DIP will extend abnormally and become rigid.

There is also a modified version of Elson’s test that can be used. Here’s how the Modified Elson’s Test is done:

  • Ask the patient to place their injured and uninjured contralateral fingers knuckle to knuckle in 90 degree PIP flexion, with the middle phalanges pressed against each other. The patient is then asked to extend both DIP joints.
  • Negative test (normal)- DIP joints symmetrically flexed.
  • A positive test (central slip injury)- Injured DIP joint extends more (See diagram below).
The modified Elson’s test. The top image of uninjured fingers shows a symmetric inability to straighten the DIP joint when the middle IP joints are flush against each other. In a central slip injury (the second image), the DIP joint is pathologically straightened, which is seen in the left hand in this example.

This video from Brian Lin demonstrates both tests beautifully.

These tests can be limited by pain and the patient’s ability to co-operate, if a closed central slip injury is suspected then the PIP joint should be splinted in an extension and follow up in a hand clinic arranged.

Treatment

Early referral to a hand surgeon for assessment and advice regarding appropriate treatment is essential.

Non Operative:

  • Closed injuries
  • Extension splinting of the PIP joint for up to 6 weeks to allow central slip restoration

Operative: Surgical treatment reserved for

  • Open injuries
  • Displaced avulsion fractures of the middle phalanx
  • PIP instability
  • Failed non-surgical treatment

Complications: Boutonnière deformity

Failure to recognize and treat a central slip injury in the ED may result in a problematic Boutonnière deformity later on.

Boutonnière deformity is characterized by flexion of the PIP joint and hyperextension of the DIP joint. It develops secondary to loss of extension force on the PIP joint, with volar subluxation of the lateral bands and subsequent DIP joint hyperextension.

Extensor mechanism over the finger. A) Intact central slip and lateral band mechanism. B) Disrupted central slip leading to a Boutonnière’s deformity.

On examination, you note swelling and bruising to the PIP joint. Michael tells you that he is maximally tender on palpation to the dorsal surface of his PIP joint. He is able to partially extend his finger at the PIP joint but using Elson’s test you note weak PIP extension, and an abnormally extended and rigid DIP joint. You diagnose a central slip injury and explain the diagnosis to Michael and his dad before referring Michael to the plastic surgery team for assessment. Plastics treat Michael in an extension splint for 6 weeks to allow central slip restoration.

Part 3: Collateral Ligament Injuries

Anatomy

The collateral ligaments stabilize the phalanges laterally at the DIP, PIP and MCP joints.

Mechanism

Forced ulnar or radial deviation of any of the IP joints can cause partial or complete collateral ligament tears.

Presentation

Collateral ligament injuries of the fingers present as tenderness on palpation overlying affected ligament, swelling and sometimes bruising.

Evaluation

The integrity of a collateral ligament is assessed by applying valgus and varus stress to the involved joint with the joint in full extension and with the joint in 30 degrees of flexion. Compare the laxity of the injured finger with an unaffected finger. Increased laxity or lack of an endpoint signify an injury.

An x-ray should be performed to out-rule an avulsion fracture at the insertion site of the ligament.

Treatment

If the joint is stable and no large fracture fragments are identified, the injury can be treated with buddy strapping.

Treatment Pearl: Buddy strapping

If the ring finger is involved, it should be secured to the little finger as the little finger is naturally extended and easily injured if exposed.

Ulnar Collateral Ligament Injury of the Thumb (Skier’s Thumb / Gamekeeper’s Thumb)

Tess was very excited as she stepped out onto the fresh crunchy snow all kitted up and raring to go. However, she didn’t count on it being so slippery and fell more or less right away whilst holding her ski poles. She had a lot of pain in her thumb and it looked a bit swollen.

It sounds like Tess has Skier’s Thumb, which is an injury to the ulnar collateral ligament of the MCP joint of the thumb.

Ulnar collateral injury

Mechanism

This injury is usually caused by forced abduction or extension at the MCP joint, typically falling onto an outstretched hand with something in the palm, falling onto an abducted thumb or as a result of a ball or object striking the ulnar aspect of the thumb during sports. This force stretches or tears the ulna collateral ligament, resulting in complete or partial rupture of the and can be associated with an avulsion fracture.

Presentation

Pain, swelling, and bruising are usually noted over the ulnar aspect (the index finger side) of the MCP joint of the thumb. The patient will also be tender on palpation to this area. Occasionally, a mass or a lump can be felt at the site of tenderness, which may suggest a Stener Lesion*. In severe ulnar collateral ligament injuries, the proximal phalanx may become subluxed with radial deviation on the metacarpal head.

*Stener Lesion

  • Normally, the ulnar collateral ligament lies deep to the adductor pollicis tendon.
  • A Sterner Lesion can form when a torn UCL becomes displaced superficially to adductor pollicis longus.
  • The presence of a Stener Lesion is an indication for surgical repair of this injury.

Evaluation

Evaluation of an ulnar collateral ligament injury involves valgus stress (radial deviation) testing of the joint at neutral and 30 degrees of flexion at MCP joint of the thumb. Compare the patient’s injured with their uninjured thumb to find out what is normal for that child. Hold the base of the thumb then apply sideways (lateral) pressure to the tip of the thumb. Increased laxity or lack of an endpoint signify an injury. It may be kindest to put in a ring block to prevent guarding due to pain, to increase the accuracy of the exam.

Functionally it’s important to test the (in)ability to grasp between thumb and finger. A stable pinch mechanism depends on the integrity of the radial collateral ligament of the index finger and the UCL of the thumb.

An X-ray should be performed to out-rule an avulsion fracture.  If an avulsion fracture is present, this will be seen at the ulnar corner of the base of the proximal phalanx. Ultrasound or MRI may be used to identify a tear to the UCL or diagnose the presence of a Stener Lesion.

Avulsion fracture to ulnar corner of proximal phalanx of thumb. Courtesy of Orthobullets.com

Treatment

Non- operative: A partial UCL rupture may be treated conservatively. Conservative management involves immobilization of the MCP joint in a thumb spica cast or thermoplastic thumb splint.

Operative: Complete UCL rupture or the presence of Stener Lesion are indications for surgical repair. Early immobilization with a thumb spica will also prevent further damage and make it more comfortable for the child while awaiting surgical review.

Tess’ thumb is very bruised and extremely tender. You pop in a ring block and with valgus stress you can tell there is increased laxity compared to the other side. There’s no fracture on x-ray. You refer Tess to your colleagues in plastics, who, after an ultrasound, diagnose a partial rupture of her ulnar collateral ligament. Her thumb’s immobilised in a thumb spica. 6 months later she’s back on the slopes!

Selected References

Allan, C. H. (2005). Flexor tendons: anatomy and surgical approaches. Hand clinics21(2), 151-157.

Armstrong, M. B., & Adeogun, O. (2009). Tendon injuries in the pediatric hand. Journal of Craniofacial Surgery20(4), 1005-1010.

Avery, D. M., Inkellis, E. R., & Carlson, M. G. (2017). Thumb collateral ligament injuries in the athlete. Current reviews in musculoskeletal medicine10(1), 28-37.

Dorani, B. (2020). Soft Tissue Injuries of the Hand. Retrieved from https://www.rcemlearning.co.uk/reference/soft-tissue-injuries-of-the-hand/#1583314733632-1b04992c-edab

Elson, R. A. (1986). Rupture of the central slip of the extensor hood of the finger. A test for early diagnosis. The Journal of bone and joint surgery. British volume68(2), 229-231.

Forward, K. E., Yazdani, A., & Lim, R. (2017). Mallet Finger in a Toddler: A Rare But Easily Missed Injury. Pediatric emergency care33(10), e103-e104.

Guly, H.R. (1991). Missed tendon injuries. Archives of Emergency Medicine, (8), 87-91.

Handoll, H. H., & Vaghela, M. V. (2004). Interventions for treating mallet finger injuries. Cochrane Database of Systematic Reviews, (3).

Hatch, D. (2019). Extensor Tendon Injuries. Retrieved from https://www.orthobullets.com/hand/6028/extensor-tendon-injuries

Kalainov, D. M., Hoepfner, P. E., Hartigan, B. J., Carroll IV, C., & Genuario, J. (2005). Nonsurgical treatment of closed mallet finger fractures. The Journal of hand surgery30(3), 580-586.

Leggit, J., & Meko, C. J. (2006). Acute finger injuries: part I. Tendons and ligaments. American family physician73(5), 810-816.

Lo, I. & Richards, R.S. (1995). Combined Central Slip and Volar Plate Injuries at the PIP Joint. Journal of Hand Surgery, 20B (3), 390-391.

Matzon, J. L., & Bozentka, D. J. (2010). Extensor tendon injuries. The Journal of hand surgery35(5), 854-861.

Nugent, N., & O’Shaughnessy, M. (2011). Closed central slip injuries–a missed diagnosis?, Irish Medical Journal, 104 (8):248-250.

Perron, A. D., Brady, W. J., Keats, T. E., & Hersh, R. E. (2001). Orthopedic pitfalls in the emergency department: closed tendon injuries of the hand. The American journal of emergency medicine19(1), 76-80.

Ritting, A. W., Baldwin, P. C., & Rodner, C. M. (2010). Ulnar collateral ligament injury of the thumb metacarpophalangeal joint. Clinical Journal of Sport Medicine20(2), 106-112.

Shah, A. S., & Bae, D. S. (2012). Management of pediatric trigger thumb and trigger finger. JAAOS-Journal of the American Academy of Orthopaedic Surgeons20(4), 206-213.

Sheth, U. (2019). Mallet Finger. Retrieved from https://www.orthobullets.com/hand/6014/mallet-finger

Sullivan, M. A., Cogan, C. J., & Adkinson, J. M. (2016). Pediatric hand injuries. Plastic Surgical Nursing36(3), 114-120.

Thurston, M. and Dawes, L. et. al. Gamekeeper Thumb. Retrieved from https://radiopaedia.org/articles/gamekeeper-thumb

Wahba, G., & Cheung, K. (2018). Pediatric hand injuries: Practical approach for primary care physicians. Canadian Family Physician64(11), 803-810.

Yoon, A. P., & Chung, K. C. (2019). Management of acute extensor tendon injuries. Clinics in plastic surgery46(3), 383-391.

Elbow dislocations

Cite this article as:
Becky Platt. Elbow dislocations, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.28344

You are called to assess 14-year old Oliver who has presented to your ED by ambulance with an elbow injury.  He dived to make a save while playing football and landed on his outstretched hand.  He reports feeling a click in his elbow, followed by excruciating pain.  He was given methyoxyflurane in the ambulance which has helped. 

Assessment of any child and examination of their elbow should be approached in an age-appropriate and systematic way.  In addition to examining for bony tenderness, vascular and neurological status should be tested.

Oliver’s elbow looks significantly swollen, deformed and bruised.  You feel for a radial pulse – it’s there – and  undertake a neurovascular assessment, which is intact.  You prescribe him some intranasal fentanyl and order AP and lateral x-Rays of his elbow.

The elbow is an incredibly stable joint due to the way the humerus and ulna articulate (giving anterior-posterior and varus-valgus stability), strengthened by the medial and lateral collateral ligaments and the joint capsule.  Muscles and tendons further strengthen this ring.  A significant amount of force is needed to dislocate the elbow. 

Traumatic dislocation of the elbow is rare in the paediatric population comprising only 3-6% of all childhood elbow injuries, but the most common large joint dislocation (Lieber et al., 2012).  It is usually the result of a fall onto an outstretched hand, often with a large amount of force involved.  

Clinically, it is obvious that there is significant injury around the elbow; this is not something you will miss or be tempted not to x-ray.  Displaced supracondylar fractures can sometimes be confused with elbow dislocation as both present with a grossly swollen elbow and significant pain.  A quick and easy way to distinguish the two clinically is to palpate for the equilateral triangle formed by the olecranon and the two epicondyles: this is lost in elbow dislocation as the humerus creates a fullness in the antecubital fossa. There is no need to check movements in a deformed elbow but be sure to undertake a neurovascular assessment as a priority.  

The easiest way to classify simple elbow dislocations is by describing the direction of ulna dislocation in relation to the distal humerus.

Classification of elbow dislocations

90% of paediatric elbow dislocations are postero-lateral with the radiographic appearance as below:

But beware: elbow dislocations rarely present in isolation.  They often coexist with other elbow injuries. Associated fractures are likely to occur prior to closure of the epiphyses; when they are closed, collateral ligaments are likely to be ruptured (Lieber et al., 2012). The most common associated fracture is a medial epicondyle avulsion which can become incarcerated in the joint – scrutinize the elbow x-rays for associated fractures. This illustrates the importance of knowing CRITOE.

Elbow dislocation with medial epicondyl avulsion from Orthobullets.com. The white arrow points to the avulsed medial epicondyl while the red arrow shows where it has been avulsed from.

Oliver returns from x-ray and you review his films. You note the posterior dislocation but cannot see any associated fractures on Oliver’s films. You contact your orthopaedic team for further assistance.

Management

Many elbow dislocations reductions can be carried out in the emergency department with adequate muscular relaxation and appropriate analgesia.  A reasonable amount of force is often required to achieve reduction using traction on the forearm with counter-traction around the elbow.  This should be carried out or supervised by a clinician experienced in the procedure. 

Common pitfalls in elbow reduction

Be very careful to conduct a thorough neurovascular assessment before attempting reduction. The brachial artery and median nerve may become stretched over the displaced proximal ulna and ulnar nerve can become damaged when medial epicondyle avulsions complicate elbow dislocations. If a deficit is found after reduction you need to know whether it was present before you attempted relocation…

And if you can’t reduce the dislocation go back and have another look at the x-ray – it could be due to an avulsed medial epicondyle in the joint. Any elbow dislocation with an incarcerated piece of avulsed bone in the joint must be reduced in theatre and not in the ED.

Complications

Possible complications following elbow dislocation include residual limitation of the range of movement, recurrent instability, neurovascular injury, avascular necrosis of the epiphyses and degenerative arthritis. Early diagnosis and stable reduction, with fixation of concomitant fractures if necessary, are generally associated with better outcomes.  For the Emergency department clinician, it is therefore critical that children with this injury are assessed and managed with the minimum possible delay, ensuring that associated fractures are recognised and managed appropriately.

After sedation with ketamine, Oliver’s elbow is reduced in the department with a satisfying clunk signifying reduction.  His elbow is put through a full range of movement to test joint stability and an above elbow backslab applied.  You order repeat x-Rays to evaluate the position and to check for the joint spacing and any fracture fragments within the joint as this would require surgical intervention.  The post-reduction films are good and Oliver’s neurovascular assessment remains normal and he leaves your ED with a follow-up appointment in fracture clinic in a week’s time.

References

Cadogan, M. (2019) Elbow Dislocation https://lifeinthefastlane.com/elbow-dislocation/

Edgington, J. (2018) Elbow Dislocation – Pediatric.  

https://www.orthobullets.com/pediatrics/4013/elbow-dislocation–pediatric

Lieber, J., Zundel, S., Luithle, T., Fuchs, J., & Kirschner, H-J. (2012) Acute traumatic posterior elbow dislocation in children.  Journal of Pediatric Orthopaedics B. 21(5) 474-481

Rasool, M. N. (2004). Dislocations of the elbow in children. The Journal of Bone and Joint Surgery, 86, 1050–1058. 

Sibenlist, S. & Biberthaler, P. (2019) Simple Elbow Dislocations in Biberthaler, P., Sibenlist, S. & Waddell, J.P. Acute Elbow Trauma.  Fractures and dislocation injuries (eBook).  Springer

Sofu, H., Gursu, S., Camurcu, Y., Yildirim, T., & Sahin, V. (2016). Pure elbow dislocation in the paediatric age group. International Orthopaedics, 40(3), 541–545

Radial head and neck fractures

Cite this article as:
Becky Platt. Radial head and neck fractures, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.21165

Aisha is 10 years old. She loves gymnastics but today, during a cartwheel, she injured her right elbow.  Aisha is cradling her right arm in her left hand and is reluctant to move it, despite having had ibuprofen at home.  

 

Assessment of any child and examination of their elbow should be approached in an age-appropriate and systematic way.  In addition to examining for bony tenderness, vascular and neurological status should be tested.

 

On examination, you note swelling around the elbow, especially on the lateral aspect.  Aisha has tenderness particularly over the radial head and complains of pain on any movement especially supination and pronation.  She has normal sensory and motor function of radial, ulnar and median nerves and normal pulses, colour and capillary refill time to her hand. You prescribe further analgesia, apply a broad arm sling for comfort and order lateral and AP x-rays of her elbow.

Radial head and neck fractures comprise around 5% of all elbow injuries in children, with a peak at 9-10 years of age. They normally result from a FOOSH (‘fall onto an outstretched hand’).  Fractures through the radial head are rare in children: more commonly the physis (the growth plate: the disc of cartilage between the epiphysis and metaphysis), or radial neck will be involved.

 

Radial Neck fractures

Radial neck fractures can generally be diagnosed on lateral and AP elbow x-ray.  It’s useful to remind yourself of the elbow anatomy prior to looking at the x-ray so that you know what you’re looking for.  It’s really important to appreciate that part of the radial neck sits outside of the capsule. Most radial neck fractures occur at the level of the annular ligament, which forms a collar around the radial neck to anchor it to the ulna.

Elbow ligaments. From RCEM Learning

This means that not all radial neck fractures have a joint effusion. Don’t be fooled by a lateral elbow x-ray without a fat pad sign – this just means there’s no joint effusion; it doesn’t mean there isn’t a radial neck fracture.

The appearance can be quite subtle, so it’s useful to remind yourself what the radial neck looks like on a normal X-ray:

Normal radial neck. Case courtesy of Dr Henry Knipe, Radiopaedia.org. From the case rID: 24158

In particular, notice how the contours of the radial neck form smooth curves, as above. These smooth curves are lost in radial neck fracture:

Radial neck fracture. Case courtesy of Dr Jeremy Jones, Radiopaedia.org. From the case rID: 42688

 

Mildly angulated radial neck fracture (black arrow) and posterior fat pad (white arrow). Reproduced with permission from Emery et al. Ped Rad. 2016; 46:61-6

How are radial neck fractures classified?

Radial neck fractures were classified by O’Brien (1965)  as follows:

Type I: <30 degrees displacement

Type II: 30-60 degrees displacement

Type III: >60 degrees displacement

O’Brien’s classification of radial neck fractures. From Orthobullets

 

Other radial neck classifications have been described so, to avoid confusion, it’s probably safest to describe the degree of displacement rather than the classification type, especially as displacement of radial neck fractures in children is uncommon.

 

How should radial neck fractures be managed?  

Most paediatric radial neck fractures are type I: undisplaced or minimally displaced.  These do really well with conservative management with immobilization in a collar and cuff.  Those with displacement of >30 degrees tend to have a worse outcome and should be referred to orthopaedics as reduction, and possible internal fixation will be required.

 

Which children need to be discussed with the orthopaedic team before they go home?

  • Any displaced radial neck fractures
  • Any radial neck fractures with a second elbow injury

 

Radial neck fractures – do not miss…

30-50% of children with a proximal radial fracture have another fracture – examine the child and their x-rays very carefully.  Having a second injury is associated with a poorer outcome. The most common associated injuries are:

  • elbow dislocations
  • medial epicondyle fractures
  • olecranon fractures

 

Radial neck fractures can also be associated with compartment syndrome of the forearm, although thankfully this is rare.   Compartment syndrome is a limb-threatening condition caused by increased pressure within the closed space of a muscular compartment which causes compression of the nerves, muscles, and vessels within the compartment.  Untreated, this can lead to ischaemic injury within 4-8 hours.

 

Assessing for compartment syndrome – the 5 Ps

  • Pain – the most important indicator.  Often diffuse and progressive, not resolved by analgesia, worsened by passive flexion of the injury.
  • Pallor – assess distal to the injury.  Dusky or cool skin (compared to the other side) or delayed capillary return.
  • Pulse – weak or absent pulse indicates poor perfusion,
  • Paralysis – assess active movement of the wrist and fingers.  This may cause pain but the purpose is to assess ability to move.
  • Paraesthesia – ask about pins and needles or a feeling of the hand “falling asleep”.  Assess sensation with light touch or using an object such as a pen lid.

Any concerns about potential compartment syndrome must be escalated to an ED or orthopaedic senior without delay as this is a time-critical situation.

 

Radial Head fractures

Like radial neck fractures, radial head fractures are also most often due to a FOOSH.  Unlike radial neck fractures, radial head fractures typically occur after the proximal radial physis has closed so are more common in older children. They are usually clearly visible on x-ray and the majority are undisplaced and respond well to conservative management in a collar and cuff or sling.  Displaced fractures of the radial head are rare and will need an urgent orthopaedic referral.

Radial head fracture. Case courtesy of Dr Henry Knipe, Radiopaedia.org. From the case rID: 24158

 

 

Aisha returns from X-Ray and you spot an undisplaced fracture of the radial neck, visible on the AP and lateral views.  You remember that associated fractures are common and so have a careful look for other injuries and check the epiphyses using the CRITOE rule.  Aisha has an isolated, non-displaced radial neck fracture with no other injuries: you pop her in a collar and cuff and organize virtual fracture clinic follow up.  You make sure to give her and her family advice about analgesia and signs of any neurovascular compromise before they leave.

 

References

Barclay, T. (2019) Elbow Joint. Innerbody https://www.innerbody.com/image/skel14.html

Davies, F., Bruce, C. E., & Taylor-Robinson, K. J. (2011). Emergency Care of Minor Trauma in Children. London: Hodder & Stoughton.

De Mattos, C. B., Ramski, D. E., Kushare, I. V., Angsanuntsukh, C., & Flynn, J. M. (2015). Radial Neck Fractures in Children and Adolescents. Journal of Pediatric Orthopaedics, 36(1), 6-12.

Edgington, J. & Andras, L. (2018) Radial head and neck fractures – pediatric https://www.orthobullets.com/pediatrics/4011/radial-head-and-neck-fractures–pediatric

Emery, K. H., Zingula, S. N., Anton, C. G., Salisbury, S. R., & Tamai, J. (2016). Pediatric elbow fractures: a new angle on an old topic. Pediatric Radiology, 46(1), 61–66.

Gaillard, F. https://radiopaedia.org/articles/radial-head-fractures?lang=us Accessed 23/06/2019

Gomes, C. & Lowsby, R. (2018) Elbow Injuries.  RCEM Learning https://www.rcemlearning.co.uk/reference/elbow-injuries/

Hill, C. E., & Cooke, S. (2017). Common Paediatric Elbow Injuries. The Open Orthopaedics Journal, 11, 1380–1393.

Kraus, R. (2014). The pediatric vs. the adolescent elbow. Some insight into age-specific treatment. European Journal of Trauma and Emergency Surgery, 40(1), 15–22.

Lampert, L. (2016). Compartment Syndrome – The 5 Ps. Ausmed. Retrieved from https://www.ausmed.com/cpd/articles/compartment-syndrome

Nicholson, L. T., & Skaggs, D. L. (2019). Proximal Radius Fractures in Children. The Journal of the American Academy of Orthopaedic Surgeons, 00(00), 1–11.

Nickson, C. (2018) Compartment Syndrome. Life in the Fast Lane https://lifeinthefastlane.com/compartment-syndrome/

O’Brien, P.I. (1965) Injuries involving the proximal radial epiphysis.  Clinical Orthopaedic related Research, 41, 51-58.

Shabtai, L., & Arkader, A. (2016). Percutaneous reduction of displaced radial neck fractures achieves better results compared with fractures treated by open reduction. Journal of Pediatric Orthopaedics, 36(4), S63–S66.

Tan, B. H., & Mahadev, A. (2011). Radial neck fractures in children. Journal of Orthopaedic Surgery (Hong Kong), 19(2), 209–212.

Olecranon fractures

Cite this article as:
Becky Platt. Olecranon fractures, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.21080

14-year old Noah was rocking on his chair while daydreaming his way through a maths lesson this morning… and fell off.  He reports that he landed directly on his left elbow and that it has been painful throughout the day.  He attends your ED this afternoon with his unamused mother.

Assessment of any child and examination of their elbow should be approached in an age-appropriate and systematic way.  In addition to examining for bony tenderness, vascular and neurological status should be tested.

You ensure Noah has been given analgesia before examining him.  His pain score is 5 and he seems comfortable after paracetamol and ibuprofen when his arm is resting.  His elbow is notably bruised and swollen. He is particularly tender over the olecranon and any movement is painful.  His neurovascular status is normal with good radial and ulnar pulses, normal sensation in the radial, ulnar and median nerve distributions and as he’s able to make the rock, paper, scissors and ok hand signs, you’re happy he has full motor function.  You order AP and lateral films of his elbow and pop him in a broad arm sling for comfort before sending him round for his x-rays.

Epidemiology and mechanism of injury

Olecranon fractures in children are rare, comprising around 5% of elbow fractures. Compare this with supracondylar fractures which comprise over half of all elbow fractures in the paediatric population. Olecranon fractures may result from a fall onto an outstretched hand (FOOSH), direct trauma or, occasionally, a stress fracture from repetitive throwing motion in athletes.

They can be classified according to the Mayo classification.

Examination findings

In addition to pain, there will almost certainly be generalised swelling around the elbow, usually with visible evidence of trauma, such as bruising or abrasion, over the olecranon process.  Point tenderness over the olecranon is often a feature, but the degree of swelling can sometimes make this difficult to appreciate.  Inability to fully extend the elbow is common, and pain on extension, supination and pronation is expected.  In those with comminuted or significantly displaced fractures it may be possible to feel crepitus over the olecranon.

Radiology

Interpreting children’s elbow x-rays can be mind boggling. Epiphyses ossify at different rates and so it can be easy to confuse a normal olecranon epiphysis with a fracture.  The olecranon epiphysis normally appears around 9 years and fuses at 15-17 years.   Be sure to refer to the CRITOE rules and if you’re not sure whether you’re seeing a normal epiphysis or a fracture, seek senior advice.  The olecranon can be best assessed on the lateral film.

This x-ray shows a normal olecranon epiphysis:

Case courtesy of Dr Jeremy Jones, Radiopaedia.org. From the case rID: 26814

Some olecranon fractures are obvious…

…but some can be incredibly subtle as illustrated in this series from Radiology Assistant:

Some olecranon fractures may only be visible on one view.  This may be the AP or the lateral.  The below elbow x-rays show a transverse olecranon fracture visible on the AP view only (arrow).  Note the raised anterior and posterior fat pads on the lateral view.  And an extra bonus point to those who spotted the subtle radial neck fracture.

Management

The majority of olecranon fractures (around 80%) are either undisplaced or minimally displaced (less than 2mm); these can be managed conservatively with an above elbow back-slab with good functional outcome.

Minimally displaced (<2mm) fracture in a 7 year old, requiring conservative management only. Case courtesy of Dr Jeremy Jones, Radiopaedia.org. From the case rID: 23650

Complications

In children with a displaced olecranon fracture, there is risk of complications including delayed or non-union, ongoing elbow stiffness and impaired function.  Refer any child who has an olecranon fracture with these features as they’re likely to require surgical intervention:

  • >2-4mm displacement
  • angulation of >30°
  • intra-articular involvement
  • extensor mechanism disruption
  • instability on extension
  • comminution

Olecranon fracture with >30 degrees of displacement, requiring surgical fixation. From Orthobullets.com.

The practitioner seeing injured children in the ED must be aware of the potential for these.  Displaced olecranon fractures can cause growth disturbances resulting in fixed flexion deformity of the elbow joint and associated morbidity into adulthood.

The ulnar nerve is particularly at risk of injury with olecranon fracture. Ensure you carry out a thorough neurovascular assessment, in particular checking sensation over the little finger and that the small muscles of the hand are functioning normally (the “scissors” sign).

A significant proportion of olecranon fractures are associated with concomitant injury, including radial neck fracture and /or supracondylar fracture and any co-existing injury is prognostic for poorer outcome.  When interpreting the x-ray, it is important therefore to have a systematic approach.

Bullets of wisdom 

  • Don’t confuse an unfused olecranon epiphysis with a fracture
  • But don’t forget that olecranon fractures can be subtle – maintain a high index of suspicion in children with direct trauma and inability to extend their elbow
  • Olecranon fractures are sometimes only visible on one view and this can be the lateral or the AP
  • Displaced fractures can have devastating consequences and must be referred to orthopaedics as they may need surgical intervention
  • Document neurovascular status and be sure to check ulnar nerve function
  • And look for a concomitant radial neck or supracondylar fracture

Noah returns from X-Ray and you review his films. He has a posterior fat pad sign and on closer scrutiny you spot an intra-articular fracture of the olecranon. You recognise that this type of fracture can be associated with complications and refer him to the orthopaedic team.  You ensure that his pain score and neurovascular status are being assessed regularly.

 

References

Cabanela M.E. & Morrey B.F. (1993) The Elbow and Its Disorders. 2nd ed. Philadelphia, PA, USA: WB Saunders cited in Sullivan, C. W., & Desai, K. (2019). Classifications in Brief: Mayo Classification of Olecranon Fractures. Clinical Orthopaedics and Related Research, 477(4), 908–910.

Caterini, R., Farsetti, P., DʼArrigo, C., & Ippolito, E. (2002). Fractures of the Olecranon in Children. Long-Term Follow-Up of 39 Cases. Journal of Pediatric Orthopaedics B, 11(4), 320–328.

Corradin, M., Marengo, L., Andreacchio, A., Paonessa, M., Giacometti, V., Samba, A., … Canavese, F. (2016). Outcome of isolated olecranon fractures in skeletally immature patients: comparison of open reduction and tension band wiring fixation versus closed reduction and percutaneous screw fixation. European Journal of Orthopaedic Surgery and Traumatology, 26(5), 469–476.

Degnan, A. J., Ho-Fung, V. M., Nguyen, J. C., Barrera, C. A., Lawrence, J. T. R., & Kaplan, S. L. (2019). Proximal radius fractures in children: evaluation of associated elbow fractures. Pediatric Radiology, 1–8.

Edgington, J. & Andras, L. (2019) Olecranon fractures – pediatric https://www.orthobullets.com/pediatrics/4010/olecranon-fractures–pediatric?expandLeftMenu=true

Hill, C. E., & Cooke, S. (2017). Common Paediatric Elbow Injuries. Open Orthopaedics Journal, 11, 1380–1393.

Kraus, R. (2014). The pediatric vs. the adolescent elbow. Some insight into age-specific treatment. European Journal of Trauma and Emergency Surgery, 40(1), 15–22.

Nicholson, L. T., & Skaggs, D. L. (2019). Proximal Radius Fractures in Children. The Journal of the American Academy of Orthopaedic Surgeons, 00(00), 1–11.

Pace, A., Gibson, A., Al-Mousawi, A., & Matthews, S. J. (2005). Distal humerus lateral condyle mass fracture and olecranon fracture in a 4-year-old female – Review of literature. Injury Extra, 36(9), 368–372.

Perkins, C. A., Busch, M. T., Christino, M. A., Axelrod, J., Devito, D. P., Fabregas, J. A., … Willimon, S. . (2018). Olecranon fractures in children and adolescents: outcomes based on fracture fixation. Journal of Children’s Orthopaedics, 12, 497–501.

Rath, N. K., Carpenter, E. C., Ortho, F., & Thomas, D. P. (2011). Traumatic Pediatric Olecranon Injury. A Report of Suture Fixation and Review of the Literature. Pediatric Emergency Care, 27(12), 1167–1169.