Skip to content

Recreational nitrous oxide

,

SHARE VIA:

John, a 15-year-old boy, was at a party with friends. One of his friends pulled out a box of small ‘whippit’ canisters. John tried these several times over the last few months and exclaimed to his friends, “These are great fun; you should give it a go!”

He showed them how to put laughing gas into balloons and inhale it. The party went on for a few hours, and the balloons seemed to never end.


As John headed home after the party, he felt a little uneasy. The following day he still didn’t feel quite right; his arms and legs felt tingly, and he had difficulty walking. His older brother brings him to their local emergency department.

This article focuses on the use of nitrous oxide in the recreational setting and the harmful side-effects seen in the clinical setting due to prolonged abuse.

Nitrous Oxide (dinitrogen oxide, N2O) is commonly referred to as Laughing Gas, Hippy crack, whippits, Nitrous or NOS. It is a colourless gas. Since its discovery as a compound in the 18th century, it has had many uses in medicine and engineering. Its use and abuse are becoming increasingly prevalent among young adults and adolescents as an inhaled anxiolytic.

Historical use of nitrous oxide

N2O’s use as a recreational relaxant spans from the Victorian aristocracy in the 18th century to the modern day. After Joseph Priestley’s discovery in 1772, the great chemist Humphry Davy began experimenting with its psychoactive properties. The use of nitrous oxide as a factitious air had [previously been described by Thomas Beddoes and James Watt (he of the steam engine)

Doctor and Mrs Syntax, with a party of friends, experimenting CC BY 4.0 https://creativecommons.org/licenses/by/4.0, via Wikimedia Commons

The recreational use of nitrous oxide

A misperceived “safe high” is obtained with the help of gas cartridges that are designed to prolong shelf life and as a whipping agent in whipped cream dispensers. The gas is extracted from small cartridges (mainly 8g whippits), using a ‘cracker’ device, and is inhaled from balloons or whipped cream dispensers. N2O can also be extracted from larger cylinders by directly inflating a balloon without an extractor device. Inhalation of N2O is often called ‘Nanging’, and allegedly induces a fleeting sensation of relaxation or euphoria.

Whippit bulbs hold roughly 10 ml of liquid N2O. This equates to around 4L of gas in a normobaric setting.

The European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) has reported its use to be “a growing concern for Europe”, partly due to growing popularity due to ease of accessibility, low cost and perceived safety.

Recreational use of N2O has become more prevalent in the EU over the last decade, partly due to the increasing availability of the gas itself and the components required and partly through legislation changes. In July 2014, the European Court of Justice declared that “products without apparent therapeutic effect cannot be classified as medicines.” In countries like the Netherlands, sales of nitrous oxide canisters and their components are regulated under the Commodities Act, leaving the processes required for recreational use challenging to prosecute. With decreasing legal repercussions observed in the EU, the availability of larger nitrous oxide cylinders has facilitated heavier use.

In 2016, nitrous oxide was declared a “psychoactive substance” and came under the auspices of the UK Psychoactive Substance Act 2016. If someone is deemed in possession of N2O with the intent to supply, they could receive a prison sentence of up to 6 months. In 2018, the data on N2O consumption in the UK was reviewed. Consumption by adults (aged 16-59) in England and Wales rose from 2% of the population to 2.3%.

How does nitrous work?

Due to the chemical compounds’ broad array of effects at a pharmacological level, N2O’s mechanism of action is poorly understood. A wide variety of ligand-gated ion channels are thought to be involved:

  • Dopamine a2-adrenergic receptors (analgesic)
  • GABAa receptors (anxiolytic)
  • NMDA receptor-mediated currents (anaesthetic)
  • AMPA, Kainate, GABAc, 5-HT3 receptors & nACh channels (mixed effect)

Side-effects of recreational use

The perceived safe high and short-lived euphoric dissociation may lead to sessions where participants may inhale upwards of 100 canisters or, using larger NOS containers, high volumes of N2O directly from individual balloons.

Initial effects of inhalation of N2O include:

  • Euphoria
  • Dissociation
  • Hallucination
  • Temporary loss of motor control
  • Analgesia
  • Intoxication

N2O is stored in liquid form in steel cylinders, and direct exposure to the body causes a significant hazard. The temperature of the jet stream exiting the cylinders is as low as -55°C, leading to frostbite and burn injuries. These burns may appear superficial but can rapidly develop into mid or deep-dermal burns.

Before the 1950s, the use of nitrous oxide in industry and recreation was deemed a reasonably safe practice. However, in 1956, Lassen et al. showed that prolonged exposure led to megaloblastic changes in the bone marrow. Long-term recreational use of N2O can lead to irreversible neurological damage.

How does nitrous oxide cause harm? Adapted from Evans, E.B. and Evans, M.R., 2021. Nangs, balloons and crackers: Recreational nitrous oxide neurotoxicity. Australian Journal of General Practice50(11), pp.834-838.

Recreational use of nitrous oxide has led to increased presentations due to both acute toxicity and long-term sequelae.

Nitrous oxide can render vitamin B12 inactive through oxidation of the cobalt ion. As vitamin B12 has a major role in maintaining myelination of the spinal cord through methylation, nitrous exposure can lead to demyelination in both the central and peripheral nervous systems.

The most common myelopathy is ‘subacute combined degeneration of the spinal cord’  (SACDC). It occurs due to the functional inactivation of Vitamin B12 and predominantly affects the dorsal and lateral columns of the spinal cord.

Anatomy of the spinal cord

Dorsal column: impaired vibration sense, proprioception and tactile discrimination

Lateral corticospinal tract: spasticity, weakness, hyperreflexia

Common neurological presentations include:

  • Ataxia
  • Sensory deficits
  • Paraesthesia
  • Weakness
  • Gait disturbance
  • If severe: spasticity +/- paraplegia

Differential diagnoses to consider include:

  • Nutritional (folic acid/copper) deficiency
  • Medication-induced
  • Small bowel disease (coeliac/IBD/lymphoma)
  • CNS demyelination
  • Pancreatic disease
  • Neoplastic
  • In an acute setting: consider ischaemic spinal cord syndrome

Investigations

Once nitrous oxide use is in the differential, how should we investigate further?

If suspecting nitrous oxide-induced neuropathy, one should always consider the differential diagnoses. A detailed clinical history is essential for assessment and a thorough clinical examination.  In chronic B12/folate deficiency, a blood film will often show megaloblasts alongside macrocytic anaemia.

Patients with physiological B12 deficiency may have a B12 level within the normal range – nitrous oxide inactivates B12 and may not decrease levels.

A common way of accurately measuring physiological B12 deficiency is by measuring homocysteine (> 15 micromol/L) and methylmalonic acid (>270nmol/L). These are both precursors to vitamin B12 in cobalamin metabolism. Serum levels may be elevated due to an inability to react with oxidised B12.

The main goal of treatment of SACD and other neuropathies due to chronic N2O abuse is focused on supplementation with vitamin B12 and stopping ongoing damage.

Hydroxocobalamin can be given orally or parenterally.

1000 mcg IM once weekly for 1 month, before transitioning to oral supplements.

Treatment targets and response can be measured with regular homocysteine and methylmalonic acid assessment.

References

Evans, E.B. and Evans, M.R., 2021. Nangs, balloons and crackers: Recreational nitrous oxide neurotoxicity. Australian Journal of General Practice50(11), pp.834-838.

Quax, M.L.J., Van Der Steenhoven, T.J., Antonius Bronkhorst, M.W.G. and Emmink, B.L., 2022. Frostbite injury: An unknown risk when using nitrous oxide as a party drug. Acta Chirurgica Belgica122(2), pp.140-143.

Qudsiya, Z. and De Jesus, O., 2020. Subacute combined degeneration of the spinal cord.

Schallner, N. and Goebel, U., 2013. The perioperative use of nitrous oxide: renaissance of an old gas or funeral of an ancient relict?. Current Opinion in Anesthesiology26(3), pp.354-360.

Svartling N, Ranta S, Vuola J, Takkunen O. Life-threatening airway obstruction from nitrous oxide induced frostbite of the oral cavity. Anaesthesia and intensive care. 1996 Dec;24(6):717-20.

van Amsterdam, J., Nabben, T. and van den Brink, W., 2015. Recreational nitrous oxide use: prevalence and risks. Regulatory toxicology and pharmacology73(3), pp.790-796.

van Riel, A.J.H.P., Hunault, C.C., van den Hengel-Koot, I.S., Nugteren-van Lonkhuyzen, J.J., de Lange, D.W. and Hondebrink, L., 2022. Alarming increase in poisonings from recreational nitrous oxide use after a change in EU-legislation, inquiries to the Dutch Poisons Information Center. International Journal of Drug Policy100, p.103519.

Wuebbles DJ. Nitrous oxide: no laughing matter. Science. 2009 Oct 2;326(5949):56-7.

Xiang Y, Li L, Ma X, Li S, Xue Y, Yan P, Chen M, Wu J. Recreational nitrous oxide abuse: prevalence, neurotoxicity, and treatment. Neurotoxicity Research. 2021 Jun;39:975-85.

https://www.emcdda.europa.eu/spotlights/spotlight-recreational-use-nitrous-oxide-laughing-gas_en#:~:text=Nitrous%20oxide%20is%20a%20gas,some%20European%20countries%20since%202010

Authors

  • Jack Molony is a doctor working in Emergency Medicine with a keen interest in technology and its use in clinical medicine. Passionate about all things sporting.

    View all posts
  • Anna O'Leary is a Emergency Medicine trainee currently based in Dublin. Special interests are PEM and civility in the workplace. When not at work she loves coffee shops and camping.

    View all posts

KEEP READING

Steroids

Corticosteroids for Croup

, , , ,
Copy of Trial (1)

The 85th Bubble Wrap Bristol Royal Children’s ED Journal Club x DFTB

Electrocution HEADER

Electrical injuries

,
Copy of Trial (1)

Bubble Wrap PLUS – October 2024

Hyperosmolar HEADER

Hyperosmolar Therapy For Raised ICP – Salty or Sweet?

, ,
DNW HEADER

Did Not Wait – DNW

,
Risk HEADER

The Perception of Risk

RSV protection HEADER (1)

Caring for children after a kidney transplant

Immunodeficiencies Module

Burnout HEADER

On Burnout

Magic HEADER

Three magic tricks every paediatrician should know

Copy of Trial (1)

The 84th Bubble Wrap

Intracranial Infections

Copy of Trial (1)

Bubble Wrap PLUS – September 2024

Copy of Trial (1)

Bubble Wrap Live from DFTB24

Leave a Reply

Your email address will not be published. Required fields are marked *

DFTB WORLD

EXPLORE BY TOPIC