COVID-19 and children: what do you need to know?

Cite this article as:
Boast A, Munro A. COVID-19 and children: what do you need to know?, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.23868

In late 2019, a new infectious disease emerged and spread to almost every continent, called COVID-19. As of March 11th 2020 it was declared a global pandemic by the World Health Organisation, meaning that is was being spread among multiple different countries around the world at the same time. It has changed the way we live our lives.

What we understand about SARS-CoV2 and COVID-19 has increased dramatically, with research being done at an extraordinary rate. For those of us whose business is looking after children, what do we need to know?

 

Editor’s note: This post is based on what we know today, Wednesday 15th of April 2020, and will be updated as new information becomes available.

 

What is COVID-19?

  • COVID-19 is the name of the disease caused by a new coronavirus, which has been named SARS-CoV-2. COVID-19 is the disease, and SARS-CoV-2 is the virus.
  • A coronavirus is a type of virus named after its unique appearance – with a ‘crown’ of proteins – when viewed with high power microscopy.
  • Coronaviruses very commonly infects humans (and some animals).
  • In humans, coronaviruses are a frequent cause of the ‘common’ cold – resulting in an upper respiratory tract infection with cough and coryza. There are, however, three types which can cause severe, even life-threatening disease in humans (SARS, MERS, and COVID-19).

 

What is the difference between COVID-19, SARS, and MERS?

Whilst they are all severe illnesses caused by coronaviruses, there are some important differences. Some useful things to consider include the R0 (how many people, on average, one case of the disease will spread to in others) and the Case Fatality Rate (CFR), an estimate of how many people who contract the disease will die from it. Neither of these statistics is hard and fast (and are both highly context-specific), but they provide a rough yardstick with which to compare infectious diseases.

  • SARS: This is an acronym for Severe Acute Respiratory Syndrome, a disease caused by the virus SARS-CoV. In 2002-3 the spread of SARS-CoV resulted in around 8,000 cases, with a CFR of approximately 10%. Similar to COVID-19, SARS-CoV originated in China, before spreading around the world, predominantly Europe, North America, and South America. The R0 from SARS is thought to be 3.
  • MERS: This is an acronym for Middle East Respiratory Syndrome, caused by the virus MERS-CoV . As the name suggested, it originated in the middle east in 2012, transmitted initially from camels to humans. MERS causes the most lethal infection of the coronaviruses, with a CFR of around 35%. The R0 from MERS is thought to be <1.
  • COVID-19:This is an acronym for COronaVIrus Disease 2019, the disease caused by the virus SARS-CoV-2. It is a zoonotic disease (meaning it was transmitted to humans from animals) and although the intermediate host has not yet been identified, it’s thought to most likely have originated in bats. It was initially identified in December 2019 in China, before spreading around the world. The CFR is unclear, as it is still uncertain how many people actually have the virus, and how many who currently are unwell will die from the disease. The overall CFR is thought to be about 1.3%. This is highly dependent on the country (and available health resources) but another significant factor is age, with only a handful of deaths reported in children <12 years who have confirmed COVID-19. The R0 for COVID-19 is still unclear but is thought to be 2-3.

 

What are the symptoms?

  • The symptoms of COVID-19 are similar to other respiratory viral infections. Importantly, in children the symptoms of COVID19 are more likely to be mild, and a significant proportion may be asymptomatic.
  • Infected children who are symptomatic most commonly present with cough and fever.
  • A small proportion of children also present with gastrointestinal symptoms (vomiting or diarrhoea) (~10%)
  • Sore throat and runny nose do not appear to be uncommon features in children (as opposed to adults)

 

How does COVID-19 affect children?

Evidence from across the globe (namely China, Spain, Italy and America), has shown that children are significantly less affected by COVID19 than adults. There are both fewer cases in children, and less children who are severely unwell. Younger infants appear to be most likely to be hospitalised. Overall, there have been only a small number of deaths in children with confirmed COVID-19 reported. A number of epidemiological and clinical papers on COVID-19 in children have been published, summarised on DFTB.

The exact reason why there are so few children with confirmed COVID-19 is unknown. Initially it was thought that due to the high rate of asymptomatic infection children were simply less likely to be swabbed and have confirmed infection. However, recent evidence from Iceland, Japan and Korea shows that children may also be less likely to become infected with SARS-CoV-2 following exposure.

It is yet unknown whether asymptomatic children can pass the infection on to others. In epidemiological studies children have not been found to have a significant role in household transmission. It appears children may continue to excrete the virus through their faeces (poo) for several weeks after the symptoms of infection have passed, but the role of this excretion in viral transmission is not clear (there is some evidence to show it is only viral particles rather than active virus). Regardless, hand hygiene remains of paramount importance in reducing spread.

 

If my child is unwell, can I give them ibuprofen?

There has been considerable social media interest in the use of ibuprofen in suspected or confirmed COVID-19. In the UK, the MHRA has deemed there is no evidence of increased risk of using ibuprofen even in cases of COVID-19.

 

What about neonates?

Neonates without comorbidities do not appear to be at an increased risk. A large number of case series having been published of babies born to mothers with COVID-19. Although some neonates have swabbed positive for SARS-CoV-2, there have been no reports of this being associated significant illness. Evidence about the possibility of transmission from mother to baby in the womb is currently unclear.

In the UK, the RCPCH has published guidelines (with the Royal College of Obstetrics and Gynaecology) recommending pregnant women with COVID-19 who are in labour should deliver their baby in an obstetric unit, however there is no need to separate mother and baby after birth, and the benefits of breast feeding outweigh any theoretical risks. Of note, the American Academy of Pediatrics has released conflicting guidelines, suggesting separation of the mother and baby.

 

What about children with chronic conditions?

There is limited data to guide us currently on how COVID-19 might affect children with underlying health conditions. There are small case studies of children with suppressed immune systems who have not developed severe illness, including children treated for cancer and inflammatory bowel disease. There is some evidence that children with respiratory or cardiovascular comorbidities may be at higher risk of hospitalisation, but it is still unclear. For children currently being treated for cancer, the UK Children’s Cancer and Leukaemia Group have posted guidance for families including which groups are extremely vulnerable and should be “shielding”.

 

Is there any treatment?

There is no proven treatment for COVID-19, however, there are many clinical trials underway for many different therapies. The WHO has clearly stated that experimental therapies should only be used in the context of a clinical trial. Hydroxychloroquine and remdesivir have been studied most extensively, but there remains no clear evidence of benefit. Importantly, hydroxychloroquine has been associated with significant adverse effects, highlighting the importance of its prescription only in the context of a clinical trial.

Notably, there are only a handful of clinical trials for children registered, so it is unlikely that any therapeutics will be widely used in children with COVID-19. As the disease is generally mild in children, it is not likely to often be necessary to provide anything further than supportive care.

Vaccines will hopefully provide protection against future outbreaks of COVID-19, though these are still early in the drug development pipeline and unlikely to be available this year.

 

What can I do to minimize my risk?

Two words – hand hygiene. As with other viruses spread by droplet (e.g. influenza) hand hygiene, particularly when out in public, plays a critical role in preventing transmission. Washing hands with soap and water, for an adequate amount of time, covering all areas of the hands is most effective. Hand sanitizer is effective, but no more so than usual hand washing

It is important to avoid contact with others who are acutely unwell. Wearing surgical masks will not protect you from respiratory viruses. Wearing one if you are unwell may protect others from your respiratory secretions.

Physical distancing is becoming increasingly important, with many countries now mandating various ‘lock-downs’. You should follow advice from your public health authorities, and it would be wise to reduce non essential physical or close personal contact with other people to a minimum 

 

What should I do if someone in my family becomes unwell?

 

Resources for health professionals

Many journals have made their COVID-19 resources open access including NEJMThe LancetBMJ, and JAMA

National professional resources can be found at:

 

Literature

For a comprehensive review of all paediatric English language literature to date which has informed this article please see our separate page for COVID-19 Evidence

Communicating with children with additional needs: Liz Herrieven at DFTB19

Cite this article as:
Team DFTB. Communicating with children with additional needs: Liz Herrieven at DFTB19, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.21387

Communication is vitally important in so much we do as clinicians.  Without good communication we can’t hope to get a decent history, properly examine our patient, explain what we think is going on or ensure appropriate management.

Procedural sedation

Cite this article as:
Tadgh Moriarty. Procedural sedation, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.23718

Sometimes we have to do things that children don’t like. These procedures may be scary, or potentially painful. In this post, we’ll cover a few of the more common techniques.

 

Case one: Kayla

Earlier this month, the UK Royal College of Emergency Medicine, RCEM, published new guidance on the use of ketamine for procedural sedation in children in the emergency department, superseding their 2016 guidelines. Follow Kayla through her ED visit as she helps us explore the changes RCEM recommends.

 

It’s 3 pm on a busy Friday afternoon on your PEM shift. You have just seen Kayla, a 20-month-old girl who fell from onto a concrete step and sustained a nasty L-shaped laceration to her thigh. You have satisfied yourself that her joints are not involved, and an x-ray reveals no underlying fracture. You can see a large amount of debris within the wound. Her vaccines are up to date and she has no significant medical history. She is, however, eating a large ice cream cone that her parents had purchased to pacify her. You wonder how best to proceed as you have a nasty wound that needs thorough irrigation and closure. A toddler is unlikely to tolerate local anaesthetic infiltration as the primary means of anaesthetising the wound.

 

Does Kayla need procedural sedation?

Paediatric Procedural Sedation (PPS) aims to alleviate the distress around painful procedures but should not be viewed as a substitute for good pain relief. Maximize analgesia and recruit any distraction devices to hand (iPads / parents / play specialists – these are a particularly excellent resource and should be utilized wherever possible).

Is the wound suitable for ‘LAT gel’? This revolutionary gel which combines lignocaine, adrenaline and tetracaine can prevent many sedations when used correctly. It takes 30-60minutes to be fully effective after application so be sure to allow sufficient time. Even if the patient is progressing to procedural sedation this gel will help with local anaesthesia and analgesia.

The ability to perform PPS will be based on current acuity within the department, available resources, and appropriate staffing skill mix. The three main agents used for procedural sedation in paediatrics are midazolam, nitrous oxide, and ketamine.

 

Kayla’s LAT gel has been in situ for half an hour. You return to the cubicle armed with a play specialist and nurse, along with your irrigation and suturing materials. Despite a stellar sock puppet show by your play specialist, loud sing-along songs, and Peppa Pig showing on the iPad, your attempt at irrigation is futile; Kayla remains upset. You decide PPS is needed to ensure effective irrigation, neat wound closure, and avoiding further trauma to an upset child (and mother!)

 

Which agent is best suited?

You need to consider what you hope to achieve with sedation and what level of experience and resources are available currently in the department to aid in answering this question. The spectrum of use varies from diagnostic imaging, through minimally painful procedures (e.g. foreign body removal, vascular access), to painful procedures (e.g. fracture reduction, wound washout and closure). The choice of agent, therefore, will reflect the individual patient (anxiety, co-operative, parental preference), and the staff available at the time.

 

Kayla requires a short painful procedure to be carried out and nitrous oxide or ketamine would be suitable. As you start showing her the face mask for nitrous, Kayla freaks out – Kayla had a slightly traumatic experience with a bronchodilator and spacer, her mother explains. There’s no way you’re going to get Kayla to cooperate with the nitrous mask. So ketamine is selected as the agent of choice.

Just as you are about to begin the pre-procedure assessment one of the student nurses who will be observing the procedure tells you that she has seen a lot on Twitter about the new RCEM ketamine PPS guideline recently but is unclear as to exactly what ketamine is and why it’s useful in paediatrics.

 

Ketamine is an NMDA receptor antagonist. It is a dissociative anaesthetic and potent analgesic and amnesic. Rather than the typical ‘sleep‘ which results after administration of other anaesthetic agents, ketamine induces a trance-like state, oftentimes with the patient’s eyes open but ‘nobody home‘ (it is important to warn parents beforehand about this as it can be quite scary if unexpected). Some of the many benefits of ketamine are that airway reflexes are maintained, while is augmented heart rate and blood pressure (for the most part – in the compromised circulation bradycardia and hypotension can occur).

 

The pre-sedation assessment

You begin Kayla’s pre-sedation assessment. Your assessment includes a focussed history: has Kayla undergone any previous anaesthesia or PPS? If so, did she have any reactions or adverse events? Does she suffer from any chronic medical conditions, take any regular medications or have any drug allergies? Does Kayla have any concurrent medical conditions – especially active asthma, respiratory tract infection or tonsillitis?

You then examine Kayla, ensuring you conduct as cardiorespiratory exam and an assessment of her airway anatomy, including ASA grade. You need to assure yourself that no contraindications exist.

 

RCEM’s 2020 guidance is very specific about the need for conducting a thorough pre-sedation assessment, including assessing ASA grade, all of which should be thoroughly documented for clinical auditing and safety purposes. An example proforma template is provided at the end of their guideline. This contrasts with the 2016 guideline, which included a list of contraindications, but did not require documentation of ASA grade.

 

It’s time to consent Kayla and her mum for the procedure. You remember that ketamine is considered safer than other hypnotic drugs such as Propofol but need to remind yourself of the specifics, and the side-effect profile prior to consenting.

 

How safe is ketamine?

Does ketamine have side effects? Yes, but of all sedation agents studied by Bhatt et al in 2017 (6,760 patients across 5 sites in Canada), ketamine came out on top. This looked at ketamine/propofol, ketamine/fentanyl, propofol alone and ketamine alone. There were 831 adverse events across all agents (11.7%) – these included oxygen desaturation (5.6%) and vomiting (5.2%). There were 69 (1.1% of cases) serious adverse events (SAE). Ketamine as single-agent had the lowest SAEs at just 0.4%.

Pre-procedural opioids and laceration repair were associated with increased risk of emesis. Bhatt et al noted that prophylactic antiemetics reduce the risk of vomiting by half, but these were not needed in those under 5 years of age due to the low overall risk of emesis.

This endorsed previous data from a large case series by Green et al (2009) which demonstrated low rates of adverse events with ketamine PPS; most notably, noisy breathing (not requiring any intervention other than airway repositioning) occurred in 1%, laryngospasm in 0.3% and of these only 0.02% required intubation.

Both of these large studies demonstrate ketamine’s excellent safety profile when used with the appropriate preparation and patient selection.

 

Does Kayla need to have fasted?

Let’s have a look at the current guidelines and evidence. Several large studies have looked at this controversial issue: one study in a US PED in 2001/2002 where only 44% of patients met traditional fasting guidelines demonstrated no statistically nor clinically significant increase in adverse events in the unfasted population.

A series of over 30,000 children undergoing PPS by Cravero et al (2006) reported only 1 episode of aspiration – and this was in a fasted patient!

In 2016, Beach et al published a report based on 140,000 procedural sedation events, noting that aspiration was a rare event. Furthermore, they concluded that non-fasted patients were at no greater risk of major complications or aspiration than fasted patients.

In 2014 the American College of Emergency Physicians (ACEP) altered their national guidance stating that procedural sedation “should not be delayed for children in the ED who have not been fasted.” This was based on a systematic review including 3,000 sedation events showing that pre-procedural fasting failed to reduce the risk of emesis, aspiration, or other adverse events. They acknowledged that the current evidence does not support the rationale put forth in the non-emergency medicine guidelines that adherence to minimum fasting times decreased adverse events in ED procedural sedation.

 

This is reflected in RCEM’s 2020 guidance, which states that there is no evidence that complications are reduced if the child has fasted. They advised that the fasting state should be considered in relation to the urgency of the procedure, but recent food intake should not be considered as a contraindication to ketamine use.*

 

*We cheered when we read this in the 2020 guideline. No more fasting – we’ve been saying this for years! But, a quick look back at the 2016 guideline shows that this was actually the recommendation back then too. Really careful scrutiny shows that a single word, “however”, has been removed from the start of the sentence, “traditional anaesthetic practice favours a period of fasting”, altering the tone of the recommendation to a much less dogmatic mandate about nil by mouth status.

 

Satisfied that the evidence does not suggest any advantage to fasting children before PPS (who, let’s face it, tend to be less cooperative when hungry anyway), you prepare the room, staff, and equipment for the procedure.

 

Where will Kayla’s procedure be carried out, how many staff do you require, and what equipment should get ready?

 

RCEM recommends at least three operators: the proceduralist (the clinician performing the procedure), the sedationist (clinician responsible purely for managing sedation) and a sedation assistant*. They specifically acknowledge that the clinician responsible for the sedation and the patient’s airway should be experienced in the use of ketamine, and capable of managing its complications. The 2020 guideline has elaborated further on this, coming with a recommendation for a need for suitable training, a minimum of six months’ experience in anaesthesia or intensive care medicine and an up-to-date APLS course.

*RCEM says ‘nurse’ for the third member of staff but really, it’s anyone who is experienced in monitoring children and supporting the sedationist – doctors can take on this role too.

ACEP’s 2014 position statement concurs with the need for three operators.

The recommendation is that the procedure should be carried out in a resuscitation bay or high dependency area with immediate access to full resuscitation facilities.

Monitoring (every five minutes) of heart rate, blood pressure, respiratory rate, and oxygen saturation is mandated. The American Academy of Pediatrics advised the use of capnography as an adjunct in order to detect hypoventilation and apnoea earlier than pulse oximetry or clinical assessment alone. While no evidence currently shows capnography reduces the incidence of serious adverse events, available studies show a decreased incidence of hypoxia and respiratory events.

 

The use of capnography during sedation has been affirmed by RCEM who have made it a mandatory minimal requirement in their most recent guideline iteration, in parallel with their previously recommended monitoring of respiratory rate, heart rate, oxygen saturations, ECG and BP.
The 2020 RCEM guideline also includes ‘degree of dissociative sedation’ as part of its recommended monitoring during the procedure, which is a new addition to their guidance. Ketamine is unique in that it does not conform to the ‘sedation continuum’ – the patient is either dissociated or not. This recommendation is perhaps aimed at prompting the sedation clinician and nursing colleague as to whether dissociation has occurred, and as to whether a top-up dose is required (more on that later).
The updated RCEM document specifically advises having key resuscitation drug dose calculations performed prior to the procedure and ready access to these, another new addition to their guidance, although no specific drugs are recommended.

 

Some doses you may find useful are:

As you’re checking the ketamine and emergency drug doses with your nursing colleague she asks whether you want her to draw up atropine and midazolam? She is a recent addition to the ED team and mentions that when she worked in theatre some years ago they frequently gave these medications together with ketamine.

 

Should any adjunctive agents be used with ketamine?

There was a previous vogue to co-administer a benzodiazepine to reduce the incidence of emergence. A 2018 BestBets review looked at this very question by studying 6 relevant studies (including 2 RCTs: Sherwin et al 2000, and Walthen et al 2000). These failed to demonstrate a significant difference in emergence between ketamine alone and ketamine with midazolam. In fact, the only difference demonstrated was increased rates of adverse advents when a benzo was co-administered. So, no prophylactic benzodiazepine required.

Having said this, if a child suffers severe emergence (older children, in particular, have increased risk of recovery agitation), then it is worth considering midazolam (aliquots of IV 0.05-0.1mg/kg) to treat (but not routinely or for minor / moderate emergence).

Another previous trend involved the co-administration of atropine to reduce the risk of aspiration. But the evidence does not support this practice, Green et al concluded “There is no evidence to support routine use of anticholinergic medication such as atropine to prevent laryngospasm or other adverse airway events.” Concurrent anticholinergics may actually increase the rate of airway and respiratory adverse events. There is a small increased risk of laryngospasm with oropharyngeal manipulation (including suctioning) so atropine (20 micrograms/kg IV) may be considered as rescue therapy if PPS is being used for intraoral laceration repair (although RCEM would recommend not using ketamine for these procedures for this precise reason).

A common side-effect of ketamine is vomiting. RCEM’s 2020 guidance recommends the use of IV ondansetron at 0.1mg/kg (max dose 4mg) to treat intractable vomiting.

Given ketamine’s emetogenic properties, is it worth giving an antiemetic prophylactically? It is worth considering ondansetron (0.1mg/kg IV) as prophylaxis in high risk groups: those with previous nausea/vomiting during sedation/anaesthesia, older children, or IM administration. The NNT depending on age of the patient will lie between Var7 and 9. This was further endorsed by a BestBets review published in the EMJ in 2018 which concluded that ondansetron should be considered when using ketamine for PPS, especially in older children or for those receiving preprocedural opioids. As with any drug, however, you’ll need to balance the risk-benefit ratio in your mind. Some would prefer not to use ondansetron prophylactically because of the risk of arrhythmias in children with undiagnosed long QT. But, again, long QT is rare…

 

A resus bay is prepped. Kayla and her mother are ready. Roles have been allocated; your nursing colleague is ready and is just removing the Ametop from Kayla’s hands which had been applied when PPS was considered; one of the ANPs will be the procedural clinician and your consultant will supervise you as the sedation clinician. You cannulate first go, while Kayla is distracted by Peppa Pig on screen. It’s time to dissociate.

 

But what dose will you give Kayla?

Various opinions exists regarding the exact or perfect dose; the most commonly accepted dosing schedule is 1-1.5mg/kg for intravenous (IV) administration.

 

RCEM’s guideline recommends a starting dose of 1mg/kg over 60 seconds (to reduce adverse events such as laryngospasm). This can be supplemented with top-up doses of 0.5mg/kg. This has not changed from their previous guidance.

 

You should notice onset of action within a minute. It is easy to spot as the child will develop horizontal nystagmus coupled with a loss of response to verbal stimuli. The heart rate, blood pressure and respiration rate may all increase slightly. Sedation will start to wear off after 20 minutes, with full recovery should occur by about 60 to 120 minutes.

Many departments are still using intramuscular (IM) ketamine. This can be particularly helpful in certain situations such as where IV access is difficult.

 

Due to its variable onset and offset time, longer time to recovery and increased risk of emesis, however, RCEM have now advised against IM except where senior decision-makers deem it necessary. The advice is that “clinicians should be mindful of the perceived safety benefits of having intravenous access from the start of the procedure to mitigate a rare adverse event.” This is the biggest change in their new guidance; the 2016 guideline included dosing and top-up recommendations for IM ketamine.

 

There are still some children who would benefit from IM ketamine, so if choosing the IM option, consider a dose of 2-4mg/kg, with senior clinical support. Ideally IV access could be achieved once the child is dissociated and the IV top-up dose can be administered if required. However if IV access is impossible or not obtained the IM top-up dose is 1-2mg/kg. You can expect a slightly slower onset at about 3-5 minutes with its duration extended from 15-30minutes. Recovery is variable occurring anywhere between 60-120 minutes.

 

As you walk over to the drug cupboard to collect your syringes with carefully calculated doses, your consultant asks, “Are you confident in managing any potential airway complications?”

 

Airway complications with ketamine PPS

Thankfully complications with ketamine are rare. Most events such as noisy breathing or stridor, and minor desaturation will respond to simple airway manoeuvres to ensure the airway is open, plus the use of high-flow oxygen via a mask with a reservoir bag. The most feared complication, laryngospasm, is extremely rare and most often will respond to simple airway manoeuvres. But sedationists must be competent in managing this prior to administering the first dose of ketamine. If laryngospasm is suspected, stop the procedure and call for help. Ensure 100% oxygen is administered if not already in situ. Gently suction any visible secretions. If this fails to improve the situation begin manual ventilation with ventilation via a bag-valve-mask or, if you are comfortable using an anaesthetic circuit, apply PEEP. Some guidelines (and anaesthetists) suggest applying pressure to Larson’s point, very similar to performing a strong jaw thrust. If there is no response at this point, with critical airway compromise, then RSI is required. Administer the pre-calculated dose of paralytic and intubate. Remember, Green’s reported incidence of intubation secondary to laryngospasm was only 0.02%.

The flowchart below may be of benefit – it formed part of my quality improvement project on PPS and was used as a wall chart in the sedation cubicle and included in each sedation proforma booklet. When emergencies occur, being able to cognitively offload by following step by step aide memoires and having pre-calculated doses to hand can be immensely comforting and helpful.

 

 

Kayla’s procedure is completed without difficulty and the nurse enquires as to how long Kayla needs to remain monitored for?

 

Children should remain monitored until their conscious state, level of verbalization and ambulation is back at pre sedation levels. They should be able to tolerate oral fluids. Prior to discharge, a final set of observations should be within normal limits for their age. Consider the need for a prescription (antibiotics or analgesia) prior to discharge.

 

Kayla successfully underwent ketamine PPS, allowing a thorough wash out of her wound and suturing which provided a tidy end result. She was later discharged with an antibiotic prescription and a teddy which the play specialist had found in the toy room for her. Delighted with your chance to use “Special K”, you quickly took out your phone to tweet about the latest changes in RCEM guidance in ketamine for procedural sedation in children in the ED (along with the endless uses of ketamine!)

 

The new RCEM guidance has come at an interesting time – how might it change our practice in PPS in the ED? PERUKI are soon to launch a two-level paediatric procedural sedation survey (name PoPSiCLE – we all know that a good study needs a catchy name) to inform the current status and variations in the practice of PPS in PERUKI , to provide baseline information for developing a network-wide training resource and patient registry. Watch this space…

 

Case two: Ronan

 

It’s a sunny Saturday afternoon. The smell of BBQ and summer is wafting through some open windows in the department. On your way to work, you noticed plenty of bouncy castles and trampolines in use. It’s not surprising your first patient is an 8-year-old boy who has fallen awkwardly while trying to impress some other kids at his birthday party. After examining him and his xray you see he has a midshaft radius and ulnar fracture with some angulation. Thankfully his DRUJ (distal radio-ulnar joint) appears intact, and his radial head is in joint. He needs manipulation of the fractures and application of a backslab. He’s in a lot of pain, despite the paracetamol and ibuprofen he had at triage. He tells you his favourite birthday cake is at home waiting for him and he wants to get home to blow out all the candles. You wonder if you can avoid him a trip to the operating room for a general anaesthetic. Would PPS perhaps be a safe alternative?

 

Nitrous oxide provides anaesthesia, anxiolysis, and also some mild amnesia. However, it offers limited analgesia and so co-administration of an analgesic is recommended. Several key papers, including the FAN study (2017) and Seith et al (2012) have demonstrated the safety and efficacy of co-administrating intranasal fentanyl (INF) with nitrous oxide.

Once you’re ready to go, move the child into the dedicated resus bay or sedation room. If using piped nitrous oxide with a variable concentration flow meter (ensuring the scavenging system is switched on) titrate the dose from 30-70% according to clinical response. The alternative is Entonox (a 50/50 mix of nitrous and oxygen) which usually comes in portable canisters but requires the child to be able to take a deep breath to overcome a demand valve circuit, usually tricky for the under-fives. You should notice the onset of effect in 30-60 seconds, but its peak effect will be 2-5 minutes so best to wait for this before commencing the procedure. Once the intervention or procedure is completed it is important to administer 100% oxygen for 3-5minutes post-procedure to avoid diffusion hypoxia. The offset of effects should occur within 2-5 minutes.

Does nitrous oxide have any side effects? While well tolerated by most children, transient minor side effects such as nausea, dizziness and occasionally nightmares can occur. It can cause vomiting in 6-10% of children receiving 50% nitrous dose. This rate increases with higher concentration and can increase up to 25% if an opioid is co-administered. Be sure to warn parents about this relative frequency of vomiting when using nitrous oxide, both during and after sedation. The risk of vomiting also increases with a longer duration of nitrous administration. Consider a prophylactic antiemetic if the child has a history of nausea or vomiting.

Nitrous oxide diffuses through tissues more rapidly than nitrogen alone and can expand in air-containing spaces within the body. This makes it contraindicated for use in patients with gastrointestinal obstruction, pneumocephalus, pneumothorax and after diving.

Nitrous oxide inactivates the vitamin B12-dependent enzyme, methionine synthase, and so can deplete vitamin B12 stores. Because of this, caution is advised in those at risk of vitamin B12 deficiency such as vegetarians, patients with gastrointestinal disorders and those taking regular H2 receptor blockers and proton pump inhibitors. Nitrous should also be avoided in those with metabolic diseases especially methionine synthase deficiency, methymalonic acidaemia, and homocysinuria (because inactivation of methionine synthase can affect homocysteine metabolism). There’s a theoretical risk to pregnancies in the first trimester and so guidance often suggests avoiding nitrous oxide exposure in early pregnancy.

During administration monitor heart rate, respiratory rate and oxygen saturations. At least two staff members are required; a sedationist and a proceduralist.

 

Ronan and his mum are happy for you to use nitrous oxide and eagerly his mum signs the consent form. While setting up the sedation room and recruiting a nursing colleague to assist, you administer intranasal fentanyl. Ronan successfully undergoes manipulation of his fractures and an above elbow backslab is applied. His post-reduction x-ray shows you performed a pretty awesome reduction and, in consultation with your orthopaedic colleagues, you are happy for Ronan to be discharged to return to their fracture clinic in a few days’ time. This delights Ronan, as he gets to return home to his birthday party (with strict instructions to remain off the trampoline) and he promises to bring you back some of his birthday cake later!

 

 

Case three: Chantelle

Your junior colleague has come to you for advice. She has just seen a 4-year-old girl who was hard at work in her playroom creating unicorn pictures. Her mum had given her lots of colourful supplies including some glittery sequins and beads. Chantelle became adventurous and decided to decorate herself rather than the unicorns. Unfortunately, one of the beads has become lodged in her ear and despite an attempt by your colleague using both parents, and a play specialist, the removal of the foreign body was unsuccessful. You believe the use of PPS will be required and begin pondering which agent to use.

 

Midazolam is a hypnotic agent providing anxiolysis and amnesia. It does not have analgesic properties, which is why it is important to co-administer with analgesia for any painful procedure. It can be administered by many routes, the two commonest for PPS being intranasal (IN) and orally. If used intranasally, a dose of 0.3-0.5mg/kg is suggested. You should notice its onset within 10-15 minutes, lasting about 60 minutes. This route of administration can cause some nasal irritation and burning, so some clinicians prefer to use it orally. With an oral dose of 0.5mg/kg you should notice onset at 15-30 minutes with a duration of effect for 60-90 minutes. Midazolam tastes bitter – so give it with some juice or squash to make it more palatable. Midazolam can be given intramuscularly (IM) and intravenously (IV), but it is less likely to be used in this fashion for PPS.

Does midazolam have any side effects? Yes! It can cause hypoventilation and apnoea – be aware that this risk is increased if co-administered with an opioid such as fentanyl or diamorphine. A reversal agent does exist: flumazenil (0.01mg/kg, max dose 1mg) but this is rarely required, and oftentimes using basic airway manoeuvres is sufficient. Paradoxical excitatory or agitation reactions can occur in up to 15% of children. Do warn parents of this possibility prior to administration. The best course of action if it does occur is to let the child “ride it out”. Because of this, many ED clinicians will choose ketamine or nitrous oxide as their PPS agent of choice over midazolam.

With these side effects in mind, it is prudent to ensure basic monitoring includes heart rate, respiratory rate, and oxygen saturation monitoring. At least two staff are required; proceduralist and sedationist.

 

Having obtained informed consent from Chantelle’s mother, you decide to give her intranasal midazolam. 45 minutes later you remove the mischievous bead from her left ear. Her parents are thrilled, but before you leave the room you remember the mantra of “always check the other ear”. So before packing up your tools and leaving her with your sedation nurse, you decide to check her other ear. Interesting you find two glittery sequins hiding in her right ear canal. Phew, that saved a second sedation event!

 

References

Ketamine Procedural sedation for children in the emergency department. The Royal College of Emergency Medicine. Best Practice Guideline. February 2020.

Bhatt M, Johnson DW, Chan J et al. Risk factors for adverse events in emergency department procedural sedation in children. JAMA paediatrics 2017 Oct 1;171(10):957-964

Bhatt M, Johnson DW, Chan J et al. Risk factors for adverse events in emergency department procedural sedation in children. JAMA paediatrics 2017 Oct 1;171(10):957-964

Green SM, Roback MG, Krauss B, et al. Predictors of airway and respiratory adverse events with ketamine sedation in the emergency department: an individual-patient data meta-analysis of 8,282 children. Ann Emerg Med. 2009; 54(2):158-168.e1-4

Agrawal D, Manzi S, Gupta R, Krauss B. Pre-procedural fasting state and adverse events in children undergoing procedural sedation and analgesia in a paediatric ED. Annals of Emergency Medicine. 2003; 42(5): 636-646

Cravero JP, Blike GT, Beach M, et al. Incidence and nature of adverse events during pediatric sedation/ anesthesia for procedures outside the operating room: report from the Pediatric Sedation Research Consortium. Pediatrics. 2006; 118(3):1087-1096

Beach ML, Cohen DM, Gallagher SM, Cravero JP. Major Adverse Events and Relationship to Nil per Os Status in Pediatric Sedation/Anesthesia Outside the Operating Room: A Report of the Pediatric Sedation Research Consortium. Anesthesiology 2016;124(1):80-8

Godwin SA, Burton JH, Gerardo CJ, et al. Clinical policy: procedural sedation and analgesia in the emergency department. Annals of Emergency Medicine 2014;63(2):247-58.e18

Sherwin TS, Green SM, Khan A, et al.Does adjuctive midazolam reduce recovery agitation after ketamine sedation for pediatric procedures? A randomised, double-blind, placebo-controlled trial. Ann Emerg Med 2000;35:229–38.

Walthen J, Roback M, Mackenzie T et al. Does midazolam alter the clinical effects of intravenous ketamine sedation in Children? A double-blind, randomized, controlled, emergency department trial. Annals of emergency medicine 2000;36(6): 579-587

Green SM, Roback M, Kennedy R et al. Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. Annals of emergency medicine 2011; 57(5): 449-461

Dunlop L, Hall D. Antiemetic use in paediatric sedation with ketamine. Emerg Med J 2018; 35:524-525

Krauss B, Green SM. Procedural sedation and analgesia in children. Lancet 2006;367(9512):766-80

Nickson C. Paediatric Procedural sedation with Ketamine. Life in the Fast Lane. March 2019

Zier ZL, Liu M. Safety of high concentration nitrous oxide by nasal mask for pediatric procedural sedation: experience with 7802 cases. Pediatr Emerg Care. 2011 Dec;27(12):1107-12

Gamis AS, Knapp JF, Glenski JA. Nitrous oxide analgesia in a pediatric emergency department. Ann Emerg Med. 1989; 18:177-181

Comfort Kids Programme. Royal Children’s Hospital Melbourne. 2016

Peyton PJ, Wu CY. Nitrous oxide-related postoperative nausea and vomiting depends on duration of exposure. Anesthesiology. 2014;120(5):1137–1145

Baum VC. When nitrous oxide is no laughing matter: nitrous oxide and pediatric anesthesia. Paediatric Anaesthesia 2007;17(9):824-30

Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. Acute Pain Management: Scientific Evidence.: Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine, 2005

Axelsson G, Ahlborg G, Jr., Bodin L. Shift work, nitrous oxide exposure, and spontaneous abortion among Swedish midwives. Occupational & Environmental Medicine 1996;53(6):374-8

Hoeffe J et al. Intranasal fentanyl and inhaled nitrous oxide for fracture reduction: The FAN observational study. Am J Emerg Med. 2017;35(5):710-715.

Seith RW, Theophilos T, Bable FE. Intranasal fentanyl and high-concentration inhaled nitrous oxide for procedural sedation: a prospective observational pilot study of adverse events and depth of sedation. Acad Emerg Med. 2012;19(1):31-6

Kennedy RM, Porter FL, Miller JP, Jaffe DM. Comparison of fentanyl/midazolam with ketamine/midazolam for pediatric orthopedic emergencies. Pediatrics. 1998;102:956–63

Pena, B.M. and Krauss, B. Adverse events of procedural sedation and analgesia in a pediatric emergency department. Ann Emerg Med. 1999; 34: 483–491

Wright, S.W., Chudnofsky, C.R., Dronen, S.C. et al. Midazolam use in the emergency department. Am J Emerg Med. 1990; 8: 97–100

Davies FC, Waters M. Oral midazolam for conscious sedation of children during minor procedures. J Accid Emerg Med. 1998;15(4):244–248. doi:10.1136/emj.15.4.244

Graff, K.J., Kennedy, R.M., and Jaffe, D.M. Conscious sedation for pediatric orthopaedic emergencies. Pediatric Emerg Care. 1996; 12: 31–35

Bailey, P.L., Pace, N.L., Ashburn, M.A. et al. Frequent hypoxemia and apnea after sedation with midazolam and fentanyl. Anesthesiology. 1990; 73: 826–830

Gregory GA. Pediatric Anesthesia. 4th ed. Philadelphia, PA: Churchill Living- stone; 2002

 

Taking your trauma team to the next level: Anna Dobbie at DFTB19

Cite this article as:
Team DFTB. Taking your trauma team to the next level: Anna Dobbie at DFTB19, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.22066

Anna Dobbie works in HEMS, PEM, and Adult ED and is a badass at all of them. She is the person you’d want leading your trauma team. Want to be just a little more like Anna? Then watch her talk and find out how to step up.

As we are so fond of saying, “You set the tone.” That first two minutes of any resus is critical – and not just because of the decisions you make. If you can appear calm and in control, your teams’ actions will reflect that. Running every trauma call the same allows for cognitive off-loading as some behaviours become automatic. Whether they are ‘real’ calls or not so serious ones the team is expected to act the same either way.

 

 
 
DoodleMedicine sketch by @char_durand 
 

This talk was recorded live at DFTB19 in London, England. With the theme of  “The Journey” we wanted to consider the journeys our patients and their families go on, both metaphorical and literal. DFTB20 will be held in Brisbane, Australia.

If you want our podcasts delivered straight to your listening device then subscribe to our iTunes feed or check out the RSS feed. If you are more a fan of the visual medium then subscribe to our YouTube channel. Please embrace the spirit of FOAMed and spread the word.

iTunes Button
 

 

How to be an LGBTQIA+ young persons ally

Cite this article as:
Dani Hall. How to be an LGBTQIA+ young persons ally, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.23101

You know what the rainbow symbol is, right? It’s become synonymous with LGBT+ identity, solidarity and support and from Pride week to day-to-day living you’re likely to spot one fairly regularly. But, you probably also know that LGBT+ people are a minority group within our society, with huge inequalities in provision of healthcare, which is tragic given that this group have huge healthcare needs. As a step towards tackling this, national health services like the NHS and HSE (Ireland’s health service) have incorporated the rainbow with their logos and put them on a pin to show that the wearer is an LGBT+ ally, someone who an LGBT+ person can feel comfortable talking to about issues relating to sexuality or gender identity, someone who will listen to them with respect, someone who’ll create a safe space for discussion.

 

If you’re reading this post, you’re probably an advocate for LGBT+ rights. You might even have an NHS or HSE rainbow badge. Great! But wearing a badge is only one step towards being an ally. The wearer must feel confident that they will treat the young person with respect and that they’ll know what to do if a young person discloses to them. The wearer may be the first person a young person has ever felt confident enough to open up to about how they feel; it may be one of the most important moments of that LGBT+ young person’s life.

So, how can you be an LGBT+ young person’s ally?

You don’t need a rainbow badge (of course you don’t) to be an LGBT+ young person’s ally. But there are a few things that will help you on your way.

First, you need to understand what LGBT+ means.

Let’s start with some definitions.

 

+: inclusive of all identities (queer, questioning, intersex, asexual, pansexual amongst others), regardless of how people define themselves.

There are some key definitions of sexual and gender orientation and expression. Let’s go through them:

Sexual orientation is a description of who we are attracted to romantically or sexually, such as lesbian, gay, bisexual, asexual, heterosexual.

Gender orientation describes an internal sense of being male, female, neither or both, a psychological sense of who we are and who we feel we are.

Transgender: a person’s gender identity is different from the gender they were assigned at birth.

Cisgender: a person’s gender identity matches the gender they were assigned at birth.

Non-binary: a person who doesn’t identify as exclusively male or exclusively female.

Gender expression is a description of how we portray ourselves to the world; how we act, speak, talk and dress. It ranges from feminine, through androgynous, to masculine.

These definitions are explained perfectly by the Genderbread person.

 

By Sam Killerman from itspronouncedmetrosexual.com

 

OK. So you know a bit of the lingo. What can you do to be an LGBT+ young person’s ally?

 

Don’t make assumptions

We live in a heteronormative environment (where being heterosexual is considered the norm) and people often make heteronormative assumptions. This means we may make an unconscious assumption that heterosexual is ‘normal’ without even realizing we’re doing it. The example on HSEland’s LGBT+ Awareness and Inclusion e-learning module is a classic example of this…

Katy is an 8-year-old girl who has been brought to the emergency department by her two mum’s, Jill and Freda. She’s called into triage and, after inviting them to sit down, the triage nurse asks, “Which one of you is Katy’s mum?” Jill replies by saying, “Actually, we’re a family with two mothers.”

The triage nurse made a heteronormative assumption here. A more inclusive approach would have been for the triage nurse to ask Katy to introduce each of the ladies accompanying her. But, until we can shake heteronormative assumptions, it can be easily done; if you do make a heteronormative assumption, apologize and move on. And make an effort not to make a similar mistake next time.

Another assumption that’s often made is about a young person’s sexual identity based on their sexual behaviour.

Suzy is a 15-year-old girl who attends the emergency department with abdominal pain and dysuria. Her urine sample is dipped – no nitrites or leucocytes, but her beta-HCG is positive. She’s pregnant. With this information in hand, you go in and, after some gentle questioning (you’re pretty good at building rapport), you ask her how old her boyfriend is.  She looks at you with disdain and replies, “I don’t have a boyfriend.” Blustering a little, you ask whether she and her boyfriend have broken up. “I’ve never had a boyfriend,” she replies.

Suzy is attracted sexually and romantically to girls and has a girlfriend called Melissa.  And you’ve just lost her trust by assuming she was straight.  Adolescent lesbian and bisexual girls are also at risk of unintended pregnancies and acquiring sexually transmitted infections.

Yet another assumption people make is cis-normativity, the belief, or unconscious assumption, that that it is ‘normal’ to be cis-gendered.  It’s explained all too well by Emily, an 11-year-old transgender girl in the Mermaid’s #IfIHadAVoice video.

 

 

Once you feel you can actively make an effort not to make any assumptions, what else can you do to be an LGBT+ young person ally?

 

Use inclusive language

It can feel artificial to start with, but try and break the heteronormative barrier and ask a young person what their chosen gender or pronouns are.

Samuel is a transgender boy. His assigned gender at birth was female and the name on his birth certificate is Samantha. He has breast buds and looks feminine. You introduce yourself to Sam and his mother, Sandra, but as you’re explaining to Sandra that you’d like to speak to Sam alone, you say, “Would you mind stepping outside the room, while Sam and I speak together first? I’ll call you back in after I’ve examined her.” Sam looks stricken and Sandra gently explains that Sam is a transgender boy and uses the pronouns he/him.

If you accidentally misgender someone, apologize and correct yourself.  We often don’t know what name or pronouns someone would like us to use, and it’s safest to assume nothing and ask (and I mean ask everyone, because you will be caught out if you don’t), “How would you like us to record your details in the medical record?”

What about sexual orientation?  A sensitive way to ask a young person about their sexual identity is to ask if they have a partner or if they’re in a relationship. If they don’t have a partner, ask them if they’re attracted to boys, girls, either or neither.  Let’s think about Suzy again.

You’re about to see Suzy, a 15-year-old girl who attends the emergency department with abdominal pain and a positive urine beta-HCG. You call her into a cubicle and introduce yourself. After taking a history of her presenting complaint and past medical history, you start a HEEADSSS assessment (more on that later). Even though you know Suzy is pregnant, you know it doesn’t mean she’s heterosexual. As you start talking with Suzy about sexuality and gender identity, you ask her, “Are you attracted to boys, girls, neither or either?”

See what you’ve done here? Suzy can now tell you that she’s in a relationship with Melissa without breaking that rapport you’d already established, paving the way for further exploration about her sexual behaviour.

 

Reassure the young person their sexual or gender identity will be kept confidential

Let’s take a step back in time. Suzy may not feel comfortable telling you about her sexual orientation as she might be worried about whether you’ll keep this information confidential. Confidentiality is a huge one. We may feel torn between sharing information about a young person who’s at risk and maintaining confidentiality. Before you start taking a history, explain to a young person that anything you discuss will be kept confidential and private, between the young person and the team looking after them, but if you discuss anything really serious, like suicide or that someone was abusing them, then you’ll come up with a plan together to get the help needed. But, and this is an important but, even if there’s something that you need to seek help for, you’ll keep their sexual or gender identity confidential if this is what they want – this is private to them and you shouldn’t be outing the young person against their wishes.

 

Adapt the HEEADSSS assessment

We mentioned the HEEADSSS assessment.  HEEADSSS is a structured psychosocial history tool.  But when you use it, adapt it.

 

H: Home environment

Up to 40% of young people experiencing homelessness internationally are LGBT+ with figures estimated to be as high as 45% in Canada and 24% in the UK, with similar patterns reported in Ireland. A report by the Albert Kennedy Trust found that more than two-thirds of LGBT homeless young people in the UK have experienced familial rejection, abuse and violence and shockingly almost 1 in 10 16 and 17 year olds have undergone or been offered conversion therapy.

E: Education / Employment

Bullying is rife in schools. 1 in 2 LGBT+ young people in the UK and Ireland experience anti-LGBT bullying at school while 1 in 4 Irish LBGTI young people skip school to avoid anti-LGBTI bullying.

E – Eating disorders

Eating disorders are sadly also much higher in LGBT+ young people. Transgender young people are 4 times more likely to have an eating disorder compared to their cisgender peers. That’s 15% of transgender young people of any sexual orientation reporting an eating disorder (data from a national sample of almost 300,000 young American students). But it’s not just transgender young people at risk of eating disorders: any LGBT+ young person is at higher risk of an eating disorder of any type.

A – Activities

Enquire about activities. LGBT+ young people are less likely to participate in sports  than their heterosexual peers. Enquiring about their leisure time may reveal risk-taking behaviour (we’ll come to that under S for Safety).

D – Drugs and alcohol

Drugs and alcohol are also a problem for LGBT+ young people. Not only are LGBT+ young people more likely to use drugs and alcohol than their heterosexual peers, LGBT+ people under the age of 13 are more likely to have tried alcohol or marijuana than heterosexual young people aged 12 and under.

S – Sexuality

LGBT+ young people are more likely to have had sexual intercourse, have had sexual intercourse before the age of 13 and less likely to use birth control than their heterosexual peers. Birth control, that’s a big one. Remember I said earlier that teen pregnancy occurs in lesbian teenagers just as it does in cis-gendered adolescent girls? The same is true for STIs. I don’t need to say that questions around sexuality and gender identity must be asked sensitively, in a non-judgmental way, without assumption, about sexual identity and gender identity.

S – Suicide, depression and self-harm

It’s widely quoted, but mental health difficulties are much higher in LGBT+ young people, very likely related to a feeling of isolation and non-inclusion and as a result of verbal and physical abuse. More than 50% of Irish LGBTI young people aged 14-18 have self-harmed; 2 in 3 have seriously considered ending their life and tragically 1 in 3 have attempted suicide. The most common age for an Irish LGBT person to attempt to take their life is 15. These are shockingly high. But Irish LGBT+ young people mental health statistics mirror those across the world, in the UK, Australasia and North America.

S – Safety

Being LGBT+ can be lonely. LGBT+ young people are more likely to use dating apps to meet people.  You can just imagine the risk this exposes them to: unsafe sexual encounters, child sexual exploitation, and grooming. Statistics support this. These young people are more likely than their heterosexual peers to be physically or sexually assaulted.  Risky behaviour doesn’t end there. LGBT+ young people are also more likely to undertake another risky behaviour, such as not wearing a seatbelt.  Gently explore risk-taking behaviour.

 

I ask myself, “Why are all these problems seen in young people with an LGBT+ identity?” It’s likely due to minority stress – the stress associated with being treated as a minority group within our society.

 

Be an ally

Knowing the different LGBT+ terms isn’t important. What is important is listening with respect, not making assumptions and creating a safe space for discussion. An ally supports equal rights for LGBT+ people and let’s face it, we’re in healthcare because we want to help people. Healthcare is for everyone.

You may be the first person an LGBT+ young person meets in their acute healthcare. You may be the person they confide in. Their interaction with you may be one of the most important moments of their life

 

 

Where can I find out more?

Watch:

Thom O’Neill’s Be a supr doc for LGBT+ youth, SMACCDub

Aidan Baron’s Crash course in LGBTQI+, DFTB17

Read:

Butler G et al. Assessment and support of children and adolescents with gender dysphoria. Arch Dis Child 2018; 103 (7): 631-636

O’Neill T, Wakefield J. Fifteen-minute consultation in the normal child: Challenges relating to sexuality and gender identity in children and young people. Arch Dis Child Educ Pract Ed 2017; 102: 298–303

Salkind J et al. Safeguarding LGBT+ adolescents. BMJ 2019;364:l245

 

 

Selected references

Charlton BM et al. Teen pregnancy risk factors among young women of diverse sexual orientations. Pediatrics. 2018: 141(4); e20172278

LGBT youth homelessness: a UK national scoping of cause, prevalence, response, and outcome: the Albert Kennedy Trust, 2015

UK Government Equalities Office. National LGBT Survey: Research report. 2018. https://www.gov.uk/government/publications/national-lgbt-survey-summary-report

Higgins et al. The LGBTIreland Report: national study of the mental health and wellbeing of lesbian, gay, bisexual, transgender and intersex people in Ireland. 2016. GLEN and BeLonGTo

Diemer EW et al. Gender identity, sexual orientation, and eating-related pathology in a national sample of college students. J Adolesc Health 2015;57:144–9.doi:10.1016/j.jadohealth.2015.03.003

Kann L et al. Sexual identity, sex of sexual contacts, and health-related behaviors among students in grades 9-12 – United States and selected sites, 2015. MMWR Surveill Summ. 2016;65:1–202

Calzo JP et al. Eating disorders and disordered weight and shape control behaviors in sexual minority populations. Curr Psychiatry Rep. 2017; 19(8): 49

School Report. The experiences of lesbian, gay, bi and trans young people in Britain’s schools in 2017. Stonewall.

Bidell MP. Is there an emotional cost of completing high school? Ecological factors and psychological distress among LGBT homeless youth. Journal of Homosexuality. 2014:61(3);366-381

Abramovich IA. No safe place to go: LGBTQ youth homelessness in Canada: reviewing the literature. Canadian Journal of Family and Youth. 2012:4(1);29-51

https://www.hse.ie/eng/services/list/4/mental-health-services/connecting-for-life/publications/lgbt-ireland-report.html

A better discharge summary

Cite this article as:
Beckie Singer. A better discharge summary, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.21995

Discharge summaries, often considered the bane of every junior doctor and ED physician’s existence. But what if we took a step back and considered these as a clinical handover to primary care – similar in nature to the clinical handover that occurs in the transfer of care documents that you would send with a patient you are transferring to another hospital? They suddenly take on a whole other level of importance. Studies from the ‘adult medicine world‘ have shown that roughly 20% of patients experience an adverse event during the hospital-to-home transition, many of which could be mitigated by good handover between the hospital and the primary care provider.

I am Sam

Cite this article as:
Dani Hall. I am Sam, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.21781

This post is based on a talk Dani presented at the Irish Association of Emergency Medicine conference in November 2019. The talk wouldn’t have been possible without the extraordinary help and inspiration from Mike Farqhuar from the Evelina London Children’s Hospital and Mike Healy from the Linn Dara CAMHS Unit.

Top 10 Tips for Consultant Interviews

Cite this article as:
Tessa Davis. Top 10 Tips for Consultant Interviews, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.21861

I’m finally settling into some job security after 16 years of changing jobs every six months. One advantage of not being in run-through training has been the frequency of job interviews (and the consequent interview experience I’ve gained). The consultant interview involved another level of preparation. Facing this is a challenge, particularly for trainees who will not have had an interview for 6-8 years.

Virtual Reality: Camilla Sorensen at DFTB19

Cite this article as:
Team DFTB. Virtual Reality: Camilla Sorensen at DFTB19, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.21504

Imagine a world where you could teach CPR from a thousand miles away, a world where you can guide clinicians on the other side of the world. In this groundbreaking talk from DFTB19 Camilla Sørensen tackles another side of virtual reality. This one involves the clinician as power user.

 

 

©Ian Summers

(Editor’s note – I was so excited when I watched this talk that I promptly bought myself a VR headset)

 

This talk was recorded live at DFTB19 in London, England. With the theme of  “The Journey” we wanted to consider the journeys our patients and their families go on, both metaphorical and literal. DFTB20 will be held in Brisbane, Australia.

If you want our podcasts delivered straight to your listening device then subscribe to our iTunes feed or check out the RSS feed. If you are more a fan of the visual medium then subscribe to our YouTube channel. Please embrace the spirit of FOAMed and spread the word.

iTunes Button
 

 

Be productive and indistractible

Cite this article as:
Tessa Davis. Be productive and indistractible, Don't Forget the Bubbles, 2019. Available at:
https://doi.org/10.31440/DFTB.21430

I love my phone (iPhone X) and I love my laptop (MacBook Pro 13″). But their aim is to enhance my productivity and not to detract from it. As apps, tech, and the way we communicate have evolved over the last 5 years, have we (or have I) evolved to handle them?