Petechiae in Children – the PiC Study

Cite this article as:
Tessa Davis. Petechiae in Children – the PiC Study, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.30782

Today the Lancet has published the long-awaited results of the Petechiae in Children (PiC) study. Team DFTB got our hands on a pre-publication copy to read, summarise, and analyse for you. So let’s get to it.

This PERUKI study by Waterfield et al. is a prospective, multicentre cohort study:

Waterfield T, Maney J-A, Fairley D, Lyttle MD, McKenna JP, Roland D, Corr M, McFetridge L, Mitchell H, Woolfall K, Lynn F, Patenall B, Shields MD, Validating clinical practice guidelines for the management of children with non-blanching rashes in the UK (PiC): a prospective, multicentre cohort study, The Lancet, 2020

Why is this study needed?

We are all somewhat terrified of children with fever and a non-blanching rash. We don’t want to miss meningococcal sepsis. Current guidelines are based on data from before the introduction of the Meningococcal B (2015) and C (1999) vaccines and consider a prevalence of 10-20% of meningococcal infection in children with fever and non-blanching rash.

Who were the patients?

The paper looked at children under 18 years old presenting to 37 Paediatric Emergency Departments in the UK over a 16 month period. Children were included if they had a fever (>38oC) and new onset of a non-blanching rash or features suggestive of meningococcal infection. Children were excluded if they had a pre-existing haematological condition or if they already had a diagnosis of Henoch-Schonlein purpura.

1513 patients were screened. 179 were excluded due to not meeting the criteria, not consenting, or a language barrier. Five that were enrolled had incomplete data leaving 1329 children were enrolled and included – the median age was 24 months, and 59% were male. Most children were vaccinated with 73% having had at least one dose of the Meningococcal B vaccine, and 77% having had at least one dose of the Meningococcal C vaccine.

What was the intervention?

There was no intervention here. Included patients were recruited at the point of meeting the criteria, using ‘recruitment prior to consent‘ and then consent was obtained soon after (usually within 24 hours). Data were collected contemporaneously: patient symptoms, blood test results, and treatment. A positive case was identified by being positive on PCR, or with a positive growth from another body sample (e.g. blood culture, or CSF). Patients were also checked for re-attendance to the hospital within 7 days. Results were also confirmed with the Public Health Agency – as meningococcal disease is a notifiable condition, this was a good method of picking up any missed cases.

What were the outcomes measured?

The primary outcome was assessing the performance of eight clinical guidelines on identifying children with invasive meningococcal disease (NICE meningitis (CG102); NICE sepsis (NG51); London; Chester; Bristol; Nottingham; Newcastle-Birmingham-Liverpool; and Glasgow).

The secondary outcomes were: performance of the eight guidelines in identifying children with other bacterial infections; and also looking at a cost comparison of each of the eight guidelines.

What were the results?

Of all 1334 children, 86% had a blood test and 45% had antibiotics. For patients admitted to hospital, the median length of stay was one night. 11 patients were admitted to PICU (2%) and two patients died (<1%).

Eight of these 11 PICU patients had N. meningitidis as did both of the patients who died. Seven patients had invasive bacterial infection (five with pneumococcal infection, one with E. Coli, and one with Group A Strep).

19 (1%) of patients in the cohort had meningococcal disease. 17 of these had N. meningitidis B, one had N. meningitidis C, and one had N. meningitidis W. Overall there were 26 patients (2%) with invasive bacterial infection (19 with meningococcal disease and 7 with an invasive bacterial infection).

346 patients (26%) did not have standard testing, and of these 19 patients (5%) had one unplanned re-attendance within seven days. However, none of these required readmission, antibiotics, or bacterial infection.

And how did the guidelines do?

All eight guidelines identified all of the 19 cases of meningococcal disease and all 26 cases of invasive bacterial infection (so the sensitivity of all of them is 100%). Specificity varied though. The NICE sepsis guideline stratified every patient as having a bacterial infection and therefore had a specificity of zero, making it the lowest specificity out of all the guidelines (closely followed by NICE meningitis guidelines with a specificity of 1%). This strategy clearly has cost implications too which is why the two NICE guidelines were also the most expensive per patient (£660.41 for the NICE sepsis guidelines).

Coming out top of the guideline ranking was the Barts Health NHS Trust guideline with a sensitivity of 100%, a specificity of 36%, and a cost of £490.29. This makes it the most accurate and also the cheapest.

Here’s the Barts Health NHS Trust guideline:

What about when we don’t follow the guidelines?

In practice, the guidelines were adhered to in 46% of the patients in the cohort. Deviation from guidelines resulted in fewer antibiotics being given. However, it also resulted in two patients being discharged with early meningococcal disease (they were subsequently treated and did not need PICU admission). Clinician decision-making increased the specificity (i.e. clinicians treated fewer people with antibiotics who didn’t have an invasive bacterial infection), but unfortunately reduced the sensitivity to 89%. Clinician decision-making did have the lowest cost per patient.

You’ve heard the facts, but how good was the paper?

As Ken Milne says…let’s get nerdy (and consider the CASP checklist for cohort studies)

Yes.

Research without prior consent was used to avoid recruitment delaying any treatment plans. However consent was obtained as soon as possible after inclusion in the study (usually within 24 hours).

Yes. Objective measurements were used for a blood test and PCR results. Risk factors for meningococcal disease are subjective and were based on contemporaneous clinical assessment – but this is what we do in practice so is a good reflection.

Yes. Note, however, that two patients with meningococcal disease were not included – one was not enrolled and the other was deemed by local staff to be inappropriate for inclusion.

Yes.

Yes, and also results were also checked with the Public Health Agency which would have allowed pick up of any missed meningococcal positive results.

There is a 1% prevalence of meningococcal disease in a mainly immunised population of children with fever and a non-blanching rash. The Barts Health NHS Trust guideline was the most accurate out of all the guidelines and with the lowest cost per patient.

Yes.

Yes. However, they would not be transferrable to populations with lower rates of vaccine uptake or a higher disease prevalence. The data was not shared on whether those with meningococcal disease were unimmunised or not, and therefore it would be prudent to be more cautious if your patient is not vaccinated.

Previous data was from prior to the meningococcal vaccination so this is the first and largest study since then.

What did the authors conclude and what can we take away from this study?

Since the advent of a vaccination programme and increased vaccine uptake, the rates of meningococcal disease are lower. Although previous data suggested 10-20% of children with fever and a non-blanching rash had meningococcal disease, in fact this study shows that only 1% had meningococcal disease.

Using a cautious guideline like NICE results in a lower specificity and higher cost. Tailored guidelines can increase the specificity and reduce the cost per patient without compromising on 100% sensitivity. The Barts Health NHS Trust guideline was the top performing guideline.

And finally, a comment from the authors themselves:

From Tom Waterfield:

The Petechiae in Children study represents the best available evidence regarding the assessment and management of febrile children with non-blanching rashes in the UK and clearly demonstrates that a lighter touch, tailored approach, is favourable to a test/treat all approach as currently advised by NICE. Moving to a tailored approach will reduce the need for invasive procedures, improve antimicrobial stewardship and save money. 

In vaccinated populations where the prevalence of invasive meningococcal disease is low the presence of Petechiae alone should no longer be viewed as a red flag and should not be used to justify immediate treatment with broad spectrum antibiotics. The emphasis and teaching should shift away from worrying about all non-blanching rashes with greater emphasis on the importance of identifying purpuric rashes as they confer the greatest risk of invasive meningococcal disease. 

Finally the PiC study demonstrates the importance of well designed prospective research studies in identifying risk factors for sepsis. Traditional approaches utilising retrospective reporting of symptoms from convenience samples of children with sepsis results in an over estimation the risks. This in turn leads to the development of overly aggressive clinical practice guidelines that are poorly adhered to. 

Note from Tessa: I am an employee of Barts Health but was not involved in the PiC study or in writing the Barts Health NHS Trust guideline.

DFTB needs you (EOI for the growing DFTB team)

Cite this article as:
Tessa Davis. DFTB needs you (EOI for the growing DFTB team), Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.30476

The time has come for DFTB to expand its team. And it’s your chance to step forward, volunteer, and join us. We have grown from a simple blog that started 7 years ago, to an educational community that creates educational content, supports each other, breaks new ground, and even gets referenced by the WHO.

DFTB’s vision is of a world where all children receive the best possible evidence-based care delivered by clinicians who are connected to their professional community, up-to-date, and motivated.

DFTB’s mission is to have a world recognised leadership role in making meaning of information in paediatric medicine, for health care workers.

We are looking for people who want to join the DFTB team and can make a commitment to volunteer some time to do so. Our structure is based on a sociocracy model made up of bubbles. Each bubble can make decisions for their own domain. You can see the structure below (click on a bubble to see its aim, domain, and what will be expected of you as a volunteer).

You can express an interest to join more than one bubble. And you don’t need to have been involved in DFTB before (you don’t even need to be in paediatrics or medicine). Here are the bubbles we are recruiting to at the moment:

We can use your skills in many ways – so if you’re interested in volunteering but aren’t sure where your skills will be used the please email us with some info to hello@dftbdigital.com

For specific descriptions of what will be required for each volunteer role, please see the chart above and click on the bubble to see more info

If you want to apply please complete the form below. Applications close on 16th November.


Gastroenteritis

Cite this article as:
Angharad Griffiths. Gastroenteritis, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.28790

Conor is a 10 kg, 13 month-old boy who’s presented to the ED with a 24-hour history of diarrhoea and vomiting.  He has had 5 episodes of non-bloody, non-bilious vomits. Since waking up this morning has two episodes of loose/watery non-bloody malodorous stools. They have not ‘flooded’ the nappy but were quite large.  He is taking sips of fluid (mixtures of water, milk, and juice being offered) and has only eaten half a digestive biscuit so far today.  He has had a fairly large wet nappy last night, but not since, though it’s now difficult to tell as his last nappy was dirty.  He is alert and looking around while being carried but is upset on leaving his mother’s arms.  He cries with tears, has a normal heart rate but his mother is worried about his dry lips.  She was told by a healthcare worker neighbour that he will “need a drip”. CRT, HR, and BP are normal.  His temperature is 37.8.  His nappy is dry and has been on for 3 hours now.  His capillary glucose measurement is 3.2.  You decide he’s probably mildly dehydrated.

Introduction

Gastroenteritis (GE) is the presence or diarrhoea or vomiting (or both) that may or may not be accompanied by fever, abdominal pain and anorexia.  Diarrhoea is the passage of excessively liquidy or frequent stools with liquid high water content.  Although often felt to be a common minor illness presentation, it is a major cause of childhood mortality and morbidity, causing millions of deaths worldwide in children in low and middle-income countries; of all child deaths from gastroenteritis 78% occur in Africa and South-East Asia. 

Gastroenteritis accounts for a huge proportion of GP and ED presentations. In Europe, acute gastroenteritis the third commonest cause of hospital admission, accounting for between 4-17% of admissions.  In Australia, gastroenteritis caused by rotavirus alone accounts for 115,000 GP visits, 22,000 ED visits and 10,000 hospital admissions a year, with an estimated cost of 30m Australian Dollars (£12m, €18m).  In the UK, 20% of GP consultations in the under 5’s are for GE.

It is imperative that the child with gastroenteritis is differentiated from more sinister causes of vomiting.  The presence of diarrhoea is reassuring but doesn’t exclude other intra-abdominal causes.  The same can be said for pain out of proportion with gastroenteritis, distension, peritoneal signs or localised tenderness.

Most cases are not associated with complications but when complications do occur, the commonest are electrolyte disturbance and metabolic acidosis.  Supplementary fluids through oral or intravenous routes are the most effective way to avoid these complications.

Gastroenteritis in low and middle-income countries can present differently, has different aetiologies, is often managed differently, and is a larger burden to healthcare systems in general than in high-income countries.  This post will focus on gastroenteritis in high-income countries. For more information about comparisons of guidelines across the world; Vecchio et al (2016) is an interesting read.

This is not meant to provide a clinical practice guideline; rather an overview of the illness.  Many (if not all!) paediatric emergency departments or general paediatric units have their own guidelines.

Pathophysiology

Worldwide, the commonest causes are viral pathogens, most commonly rotaviruses and noroviruses.  Viral infections cause damage to the small bowel enterocytes with resultant low-grade fevers and watery diarrhoea – classically without blood.  Rotavirus strains are seasonal and vary within different geographical areas.  The peak age for these infections is between 6 months and 2 years.  Children with poor nutrition are at higher risk of acquiring gastroenteritis and developing dehydration and complications.

Children with bacterial gastroenteritis are more likely to have bloody stool.
Escherichia coli and Shigella dysenteriae can be complicated by haemolytic uraemic syndrome (HUS).  This is an acute onset, microangiopathic haemolytic anaemia, thrombocytopaenia, acute renal impairment and multisystem involvement.  (Just to confuse things, HUS can present in the absence of bloody diarrhoea.)

Pathogens can be generalised into four groups:

  • Viral (70% of cases): Rotavirus, Norovirus, Adenovirus, Enterovirus
  • Bacterial (10-20% of cases): Campylobacter jejuni, Salmonella spp, Escherichia coli, Shigella spp, Yersinia enterocolitica.
  • Protozoa (unusual, accounting for <10%): Cryptosporidium, Giardia lamblia, Entamoeba histolytica
  • Helminths (very unusual): Strongyloides stercoralis

Transmission

Pathogens are spread mainly via the faeco-oral route, acquired by ingesting contaminated food or drink.  Water may be contaminated with bacteria, viruses, or protozoa. Undercooked (or inappropriately stored/cooked) meats and seafood are common culprits of bacterial pathogens.  Bacterial contaminants can produce toxins (e.g. Bacillus cereus in re-warmed rice or Staphylococcus aureus in ice-cream).

Pathogens causing gastroenteritis can also be transmitted without the patient being symptomatic.

Assessment

Gastroenteritis is a clinical diagnosis.  Enquire about sick/infectious contacts and potential sources (recent travel, food).  Enquire about the frequency of symptoms and intake of fluids.  Note the frequency of urination.  Note other things that may cause diarrhoea e.g. recent use of enteral antibiotics or chronic constipation with overflow diarrhoea the presenting feature. 

In the presence of signs such as high fever, long duration of symptoms, severe abdominal pain or bilious vomiting; review the diagnosis and do not immediately label as gastroenteritis.

Oral hydration fluids

Most children are not dehydrated and can tolerate oral fluids and so can be managed at home.  Take a look at Nikki Abela’s DFTB19 talk on top tips for a high yield dehydration assessment.

When children are only mildly to moderately dehydrated, as a general rule they can be treated with oral / enteral rehydration with low osmolality oral rehydration solution (ORS).  Worldwide, ORS is recognised as first line therapy and treating mild to moderate dehydration with enteral rehydration is supported by the WHO, European Society for Paediatric Gastroenterology and the American Academy of Paediatrics. The WHO recommends a low osmolality (hypo-osmolar) solution, usually containing sodium, potassium, chloride, carbohydrate (glucose) and a base.  Low osmolarity solutions reduce the need for IV fluids, reduce stool output and reduce vomiting frequency.

But… a major limitation to the use of ORS is its taste – and this is where apple juice comes in. For minimally dehydrated patients, half-strength apple juice is associated with fewer treatment failures compared to ORS and could suit as a more palatable alternative.  Take a look at a sweet summary (pun intended!) of the “apple juice trial”.

Breastfeeding should continue and a child can be supplemented with ORS if this is needed.  Children can go back to a normal diet after the illness has passed.

Enteral (oral / NG) versus IV hydration

Most studies show that enteral rehydration with ORS is just as effective as IV hydration in mild to moderate dehydration with a 2006 Cochrane analysis concluding that enteral rehydration is as effective if not better than IV rehydration with fewer adverse events and a shorter hospital stay.  It is also less invasive (even with NG placement) and anecdotally satisfaction is greater amongst parents.  It is very safe.

Enteral rehydration only fails in approximately 1 in 20-25 children.

Barriers to oral rehydration include unfamiliarity with the benefits, misconception that it takes longer than IV therapy, and that it has a high failure rate.

Contraindications to enteral rehydration include haemodynamic instability, abdominal distension, concern over ileus, absent bowel sounds, or impaired airway reflexes.

IV therapy is more invasive and involves placing and maintaining IV access.  There are also iatrogenic complications including electrolyte disturbance should inappropriate fluids / composition / volume / rate be used. 

But… in severely dehydrated children, put away the ORS and apple juice. They will need IV rehydration as first line.

Antiemetics

How can we support enteral fluids? Well, children who receive Ondansetron are less likely to vomit, have greater oral intake and are less likely to require IV hydration.  A Cochrane review demonstrates that Ondansetron also increases the proportion of children who stop vomiting when compared to placebo [RR1.4] and reduces the proportion of children needing IV therapy (and therefore admission rate) [RR 0.41].  Median length of stay is also shorter in the ED. 

Reported side effects are rare with very few reported side effects other than a few cases of increased frequency of diarrhoea.

Antiemetics alleviate vomiting by acting on the ChemoReceptor Trigger Zone and vomiting centre.  Ondansetron is a 5HT3 receptor antagonist.  This class of antiemetics have fewer adverse effects (than dopamine antagonists, anticholinergics, antihistamines and corticosteroids) and can be safely used in children.  The NICE guideline discusses its off-licence use (at time of publication it’s licence was for post-operative nausea and vomiting and chemotherapy induced vomiting).

Ondansetron prolongs the QT interval.  Recommendations are it should be avoided in those with long QT and should be used in caution where there may be electrolyte imbalance (severe dehydration) or on other QT-prolonging medication.

Ondansetron is relatively cheap  £1.71 for 10 4mg tablets and is available in oro-dispersible form (though these are much more expensive at £36 for 10x4mg tablets) and liquid (£36.82 for 40mg [50ml] bottle).

Probiotics

An ESPGHAN working group position paper on the use of probiotics in acute paediatric gastroenteritis concludes that:

  • Effects seen in clinical trial are probiotic strain specific (this makes ‘trial-life’ difficult to replicate in ‘real-life’).
  • A lack of evidence now doesn’t mean that there won’t be evidence sometime in the future. 
  • Safety profile of certain strains cannot be extrapolated to other strains.
  • Studies that report benefits in certain doses in certain settings have insufficient evidence to support a health benefit at lower doses and different setting.

…the jury’s still out.

Other therapies

Antibiotics and anti-diarrhoeal agents aren’t routinely recommended in the management of paediatric gastroenteritis.

For gastroenteritis in high income countries, the WHO does not recommend adding zinc to a treatment regimen (it is for gastroenteritis in low and middle income countries). 

Investigations

Routine lab testing in mild and moderate gastroenteritis is of little value in these patients and should be avoided unless clinically indicated.

This goes for stool samples too.  Stool cultures are not routinely indicated in immunocompetent children with non-bloody diarrhoea.

Confirmation of viral gastroenteritis after the child has been discharged from the ED, and likely on the road to recovery at home, adds very little to (A) the clinical diagnosis of viral gastroenteritis in the ED, (B) the management plan and (C) the clinical outcome. 

Should the investigation influence management, then stool sampling may be of benefit.  This could be applicable where an outbreak may be suspected in school or creche, where there may be a public health benefit.

Stool samples should be sent in cases of bloody diarrhoea, immunodeficiency and recent foreign travel.

How about tests for dehydration? Sadly there is no one test that correlates clinically with dehydration. Urine specific gravity in infants is unreliable because the kidney reaches adult concentrating abilities after the age of 1.  Also, the child often doesn’t begin urinating until rehydration has begun.

And glucose? Well, almost 10% of GE patients aged 1 month to 5 years in high income countries present with hypoglycaemia.  Risk factors for hypoglycaemia on presentation include a longer duration of vomiting and increased frequency of vomiting.  It would be reasonable to consider point of care glucose testing at triage for young children as identifying hypoglycaemia on clinical ground alone is difficult in this age group. 

Prevention

The key to reducing the burden (and generally for an all-round happier life!) is in the prevention of acute gastroenteritis.  Rotavirus vaccination is now commonplace thought the antibodies, the UK & Ireland and other countries around the world.  It is very effective.

In the home and in the ED…Handwashing, handwashing, handwashing!

Vaccination leads to a profound reduction in presentations and admissions and a fall in overall seasonal workload, often within the first year after the introduction of universal vaccination against rotavirus.  Even though only those under 1 year old are generally vaccinated, it has been shown to contribute to a significant herd effect with fewer cases than expected in older children. In Scotland, where initial vaccine uptake was 93- 94% during the first 2 years, annual rotavirus confirmed gastroenteritis cases fell by 84.7%, bed days reduced by 91% (from 325 to just 29), without any documented cases of intussusception.  Reductions were seen across all age groups despite only infants receiving the vaccine.  Similar results can be seen in other areas of the UK and Ireland.

The not to miss bits

  • Do not assume isolated vomiting in a child is gastroenteritis.  Consider other causes -these very widely from inborn errors of metabolism to diabetes mellitus, surgical obstruction to urinary tract infections. If you’d like to hear more, check out Dani’s talk on vomiting in children in DFTB Essentials.
  • Beware chronic diarrhoea in an infant – do they have malabsorption or is this a presentation of IBD or an immunodeficiency?
  • Beware the non-thriving child with diarrhoea.
  • And beware chronic diarrhoea.

But what happened to Conor?

Conor was given a cup of Dioralyte ORS and his favourite beaker filled with Dioralyte.  His mum was encouraged to give him syringes of 5 mls of Dioralyte frequently or for him to take sips from his beaker and was asked to document on a piece of paper how many he received.  He vomited after 30 minutes of this therapy.

You give him a dose of Ondansetron and place an NG tube and give him 100mls (10ml/kg) over 1 hour after deciding he does not need rapid rehydration but slightly more than normal maintenance.  He then receives maintenance volumes of Dioralyte via his NG, which he tolerates well and then starts to take his own sips from his beaker.

He does not vomit in the ED again, has one episode of loose stools, passes urine, and is tolerating fluids orally.  He’s smiling at you! You feel he can be discharged and council his mum regarding regular fluid intake, choice of fluids, of any red flags, and encouraged to return in the event of any concern.

Conor’s Dad calls to say that Conor’s 3 year old sister at home is now vomiting too!  But it’s OK – He’s not too worried about her and Conor’s Mum has advised his Dad to start giving her regular sips of Dioralyte at home…

References

Colletti JE, Brown KM, Sharieff GQ, Barata IA, Ishimine P. The Management of Children with Gastroenteritis and Dehydration in the Emergency Department. J Emerg Med [Internet]. 2010;38(5):686–98. Available from: https://dx.doi.org/10.1016/j.jemermed.2008.06.015

Elliott EJ. Acute gastroenteritis in children. Br Med J. 2007;334(7583):35–40.

Vecchio A Lo, Dias A, Berkley JA, Boey C, Cohen MB, Cruchet S, et al. Comparison of Recommendations in Clinical Practice Guidelines for Acute Gastroenteritis in Children. Gastroenterology. 2016;63(2):226–35.

Freedman SB, Willan AR, Boutis K, Schuh S. Effect of dilute apple juice and preferred fluids vs electrolyte maintenance solution on treatment failure among children with mild gastroenteritis: A randomized clinical trial. JAMA – J Am Med Assoc. 2016;315(18):1966–74.

BK F, A H, JC C. Enteral vs Intravenous regydration therapy for children with gastroenteritis: A meta-analysis of randomized controlled trials. Arch Paediatr Adolesc. 2004;158(1):483–90.

Hartling L, Bellemare S, Wiebe N, Kf R, Tp K, Wr C, et al. Oral versus intravenous rehydration for treating dehydration due to gastroenteritis in children (Review). 2006;

Fedorowicz Z, Jagannath V, Carter B. Antiemetics for reducing vomiting related to acute gastroenteritis in children and adolescents. [Internet]. Cochrane database of systematic reviews. 2011. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005506.pub5/full

NICE. Management of vomiting omiting in children and y young oung people with gastroenteritis : ondansetron. NICE GUIDELINES. 2014. p. 1–20.

Szajewska H, Guarino A, Hojsak I, Indrio F, Kolacek S, Shamir R, et al. Use of Probiotics for Management of Acute Gastroenteritis : A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. 2014;58(4):531–9.

Forrest R, Jones L, Willocks L, Hardie A, Templeton K. Impact of the introduction of rotavirus vaccination on paediatric hospital admissions , Lothian , Scotland : a retrospective observational study. 2017;323–7.

MARLOW RD, MUIR P, VIPOND I, TROTTER CL FA. Assessing the impacts from the first year of rotavirus vaccination in the UK. Arch Dis Child. 2015;100(Supl 3):A30.

Take a break?

Cite this article as:
Andrew Tagg. Take a break?, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29431

We spend a large proportion of our lives at work so it is important that we pay attention to our own wellbeing. A casual stroll through Twitter may reveal any number of wellbeing initiatives – from early morning yoga classes, through communal choirs, to meditation mornings. Whilst, subjectively, many of these appear to work, there is clearly a need for a better measure of wellbeing. Enter the NFR.

What is the NFR?

The Need For Recovery scale measures that subjective feeling of the need to take a break and recuperate from the emotional and physical demands of a day at work.

Originally derived from a sample of 68775 shift workers in the Netherlands, it is comprised of eleven dichotomous Yes/No questions.

In the emergency department, there are a number of extrinsic factors that might impact on our Need For Recovery. These include departmental crowding, lack of resources, and ambulances queuing out of the door. The assumption is that the daily accumulation of such tiring shifts, without a restorative break, can impact on our long-term health and increased occupational stress.

In order to look at how we are doing now, it might be worth taking a snapshot of the adult and paediatric emergency department workforce. PERUKI and TERN combined their might to do just this.

Cottey L, Roberts T, Graham B Trainee Emergency Research Network (TERN) and Paediatric Emergency Research in the UK and Ireland (PERUKI), et al. Need for recovery amongst emergency physicians in the UK and Ireland: a cross-sectional surveyBMJ Open 2020;10:e041485. doi: 10.1136/bmjopen-2020-041485

Population

This study was coordinated through the Trainee Emergency Research Networks (TERN) of UK and of Ireland and Paediatric Emergency Research in UK and Ireland (PERUKI).

A total of 4247 emergency physicians* from 112 emergency departments completed the survey.

For the purposes of this study an emergency physician was defined as any doctor working within the ED, be they seasoned veterans or post-graduate year one doctors completing their six-month term in emergency medicine.

Exposure

Participants were invited to take part in an online version of the Need For Recovery instrument. Although developed for industry it has been piloted in Emergency Department staff. Graham et al. (2020) trialed the survey in a single ED and achieved an 80.3% response rate (168/209). These subjects had to complete the 11 point NFR survey as well as an additional 32 questions. This larger survey upped the ante and added 44 items to the NFR. The quality of the web-based survey was maximized using the CHERRIES checklist.

Snapshot data was collected over a six-week period from 3rd June 2019, long before anybody had even heard of SARS-CoV-2.

Outcomes

Before we look at the Need For Recovery it is interesting to look at the demographic data.

3445 (83.5%) survey respondents worked full time. 609 (14.7%) worked less than or equal to 80% full time equivalents.

2886 (70.3%) worked more than one in four weekends with a shocking 1479 (36%) working every other weekend!

36.2% worked for, at most, four consecutive days, with the majority working between five and seven days in a row. 13.5% (554) had been rostered on for eight days straight.

Emergency physicians score higher than paediatricians, miners, paramedics, everyday folk, nurses, merchant sailors and truck drivers

The median NFR score (remember you want it to be as low as possible) was 70.0 (with 95% confidence intervals ranging between 62.0 and 78.0). It appeared to be higher in the more junior cohort – those that had been in the department for less than a year. This group scored an average of 72.7 with an upper limit of 90.9. Those who had spent more time in the job seemed better at recovery with a median NFR of 63.6. Those lucky individuals that had made a career of emergency medicine and had spent over ten years in post had the lowest score of all, 54.5.

As one might expect, higher scores were associated with a full-time work commitment, a burdensome weekend roster, and a higher number of consecutive days worked.

Lower scores were found in consultants and those that worked less than full time. The ability to access study leave and annual leave was also associated with lower scores. Luckily for those of us who have pursued a career in paediatric emergency medicine, this appeared to be associated with a lower NFR score too.

The authors conclude that there are three modifiable risk factors related to a higher NFR – access to annual leave, to study leave, and the proportion of out of hours work. Non-modifiable factors included things like male gender, seniority, generally good physical health, and working in a Paeds ED.

Risk of bias

So far we have reported the facts, as presented but let’s get a little nerdy, as Ken Milne would say, and look at the paper using Burns and Kho (2015) assessment guide for survey reports.

Was a clear research question posed?

Yes – the researchers wanted to look at Need For Recovery scores in a cohort of doctors working in emergency departments throughout the United Kingdom and Ireland.

Yes but… – the target population was defined as any registered doctor who had a fixed contract position (i.e. not a locum) in an emergency department in the UK and Ireland.

There are 183 Type 1 Emergency Departments in England alone. These are consultant-led, 24 hours a day, 7 days a week, 365 days a year services. The authors asserted that they wanted to have over 50% of their respondents from Type 1 centres but this data is not clear in the data presented. Are the majority of respondents from centres that do not have good consultant support?

According to 2018 data, 26% of advertised UK EM consultant places are unfilled. I would be interested to know if individual departmental data could be pulled out and benchmarked against the national average.

Yes – the technique was clearly outlined in the methods.

Yes – the questionnaire developed was very similar to that used by Graham et al. The only key difference being around some of the ancillary questions, rather than those analysed in this paper

Yes – it was distributed in an appropriate way.

No – though all principal investigators should be applauded for the large number of surveys completed, it is not clear what the denominator is. How many emergency physicians, as defined by the study group) were working during the six week period? Were those doctors who did not even attempt to complete the survey just too exhausted to do so?

Each site PI did provide an best-guess estimate of the number of potential respondents (accounting for sick leave, sabbaticals, annual leave etc.). This number was then used as the departmental denominator, with each site aiming for a 70% response rate. The actual response rate is not mentioned in the paper.

Sort of – there were actually 5107 unique visits to the survey site but only 4247 eligible for analysis. The NFR scores were then calculated as long as a minimum of 8 of the 11 questions were answered. The authors do not mention how they handled the missing data. If only 8/11 answers were provided, how would the addition of 3 further data points affect the results?

The demographic data was clearly reported, barring a few items, as described above, and the rest of the results were presented neatly.

Although I agree with the majority of the authors conclusions I am not so sure I would agree with the assertion that NFR score is unrelated to hours worked. It would seem from the data provided in table 2. those working less than full-time had a lower score.

Where to from here?

The ability to bounce back after a hard day at work is a marker of our general wellbeing. Whilst not everyone can swap over to working in PEM, these data from Cottey et al. would suggest that there are modifiable factors that would improve one’s ability to recover. Interestingly, none of these are within the junior doctors’ locus of control – access to study or annual leave, and better rostering. They are fully in the hands of others. This lack of autonomy can also lead to a lack of motivation.

The term, Need for Recovery, suggests that the onus is on the individual as if they were an elite athlete resting between races. It is not. It is the system that needs to change.

The authors note, in their limitations, that this is just a data snapshot, taken at one moment in time. There is little, in the medical sphere, to benchmark this data against. A similar survey could be carried out, in a different setting, in different geography or at a different time. Are these ratings typical of all areas of the hospital in the NHS or is it just the NHS? Do different craft groups score as highly? Are Need for Recovery scores as high in Australia and New Zealand (Editors note: I’ll work on that one) or are they a product of just working in the ED, regardless of the temperature outside? Are these scores a product of the time? The survey was carried out in the Northern hemisphere summer of 2019. What would those scores be like now, in a COVID ravaged world?

One more thing

There is one non-modifiable risk factor that we have not discussed – gender. Male and female respondents were equal in number but men had a much lower NFR than women – 65.6% (CI 60.8 – 66.5) vs 72.7% (70.5 – 75). But, women are much more likely to be the primary caregiver, you might argue. And you would be right, but even if this is taken into account, women seem to have a higher need for recovery. This seems to hold true in other studies that have looked at gender differences and fatigue.

References:

Burns KE, Kho ME. How to assess a survey report: a guide for readers and peer reviewers. Cmaj. 2015 Apr 7;187(6):E198-205.

Eysenbach, G., 2004. Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Journal of medical Internet research6(3), p.e34.

Graham B, Cottey L, Smith JE, et al Measuring ‘Need for Recovery’ as an indicator of staff well-being in the emergency department: a survey study. Emerg Med J  Published Online First: 2020. doi: 10.1136/emermed-2019-208797

Van Veldhoven, M.J.P.M. and Broersen, S., 2003. Measurement quality and validity of the “need for recovery scale”. Occupational and environmental medicine60(suppl 1), pp.i3-i9.

Winwood, P.C., Winefield, A.H. and Lushington, K., 2006. Work‐related fatigue and recovery: the contribution of age, domestic responsibilities and shiftwork. Journal of Advanced Nursing56(4), pp.438-449.

Wood, M., 2005. Bootstrapped confidence intervals as an approach to statistical inference. Organizational Research Methods8(4), pp.454-470.

The 44th Bubble Wrap

Cite this article as:
DFTB, T. The 44th Bubble Wrap, Don't Forget the Bubbles, 2020. Available at:
https://dontforgetthebubbles.com/the-44th-bubble-wrap/

With millions upon millions of journal articles being published every year it is impossible to keep up.  Every month we ask some of our friends from PERUKI (Paediatric Emergency Research in UK and Ireland) to point out something that has caught their eye.

Article 1: Neurodevelopmental outcomes at the edge of viability.

PEM Adventures Chapter 1

Cite this article as:
Dani Hall, Rachael Mitchell and Sarah Davies. PEM Adventures Chapter 1, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29589

Stories are a powerful vehicle for education. Combine a story with some active participation and you have the recipe for some great learning. And so, it’s with great delight, that we bring you Chapter 1 of PEM Adventures. First presented at EuSEM 2018 and then again with some spectacular twists by Dan Lumsden, Paediatric Neurologist extraordinaire, Dani has a particular soft spot for Tomas, a little boy who dreams of being a footballer. Join us on a journey (with an inbuilt time travel machine) in managing Tomas, a little boy with a dream…

Meet Tomas, an 8-year-old boy who dreams of playing professional football. He’s been completely well until an ill-fated shopping trip for some new football boots. At 2 o’clock hours, while trying to persuade his mother that he definitely did need the new Premier League football to add to the collection, he developed sudden onset right-sided facial drooping. His mum bundled him into the car and drove him directly to your ED. You look at your watch: it’s now 3.30 pm.

Your assessment is as follows: Tomas is alert and he seems orientated. He has right sided facial weakness and weakness of both his right arm and leg. He has no obvious sensory changes but is struggling to communicate with you as he has global aphasia.

Suspecting the worse, you have a critical decision to make. But what are you going to do?

You bleep neurology.

And wait…

They don’t answer so you bleep again…

But they still don’t answer…

You bleep a third time…

But they still don’t answer. So you give up and call radiology instead.

You call radiology. And they ask… What imaging do you want?

The radiologist says, “Sure, imaging sounds like a good idea. Let’s do a combination of both a CT brain with CTA to look for blood and clots.

The CT scanner is available at 16:00.

But,” she adds, “if you’d like MR imaging, we could do that at 18:00.

Do you…

Tomas’ CT and CTA shows evidence of an arterial ischaemic stroke with thrombus occluding the middle cerebral artery. There is no intracranial haemorrhage.

It is now 16:15, 2 ¼ hours after the onset of Tomas’ symptoms.

You’re doing great. Close the toggles and move on to the next part of Tomas’ case.

Tomas has an MRI and MRA.

It shows an arterial ischaemic stroke with thrombus occluding the middle cerebral artery.

It is now 18:45, almost 5 hours after symptom onset – something tells you this is a bit too late.

Luckily for you, the inbuilt time machine whizzes you back to make that last decision again.

This time when you’re told you can have an MR and MRA at 18:00 or CT and CTA now you say… “I’ll have a CT and CTA now please.”

The radiologist says “Sure, imaging like a good idea. Let’s do a combination of both an MRI plus MRA to check the brain and look for clots.”

You phone MR. They say they can do the MR at 18:00. The CT scanner, however, is free now.

Do you…

Tomas has an MRI and MRA. It shows an arterial ischaemic stroke with thrombus occluding the middle cerebral artery. It is now 18:45, almost 5 hours after symptom onset – something tells you this is a bit too late.

Let’s travel back in time…

This time when you’re told you can have an MR and MRA at 18:00 or CT and CTA now you say… “I’ll have a CT and CTA now please.”

Tomas has a CT and CTA. It shows evidence of an arterial ischaemic stroke with thrombus occluding the middle cerebral artery. There is no intracranial haemorrhage.

It is now 16:15, 2 ¼ hours after the onset of Tomas’ symptoms.

You’re doing great. Close the toggles and move on to the next part of Tomas’ case.

With a little luck, Tomas has now had neuroimaging and you know he’s had an arterial ischaemic stroke with thrombus occluding the middle cerebral artery without intracranial haemorrhage.

So, what now? You haven’t managed to get hold of a neurologist for love nor money. So do you…

Tomas has supportive care.

Despite physio, OT and lots of assistance at the best neuro-rehabilitation centre, Tomas has a persistent hemiparesis.

You spend your life wishing you’d treated his stroke differently.

So let’s try that choice again.

You prescribe 5mg/kg aspirin.

Tomas has repeat imaging with an MRI and MRA 24 hours later.  His clot has not increased in size but the original clot remains in the middle cerebral artery.

Tomas has a persistent hemiparesis.

He becomes a demon-swimmer and wins Gold in the 2028 Paralympics

However, you spend your life wishing you’d treated his stroke differently.

Why don’t you try that choice again.

You prescribe heparin.

24 hours later Tomas deteriorates, dropping his GCS to 6

Repeat neuroimaging shows a large haemorrhage in the infarcted territory with significant pressure effect.

Let’s go back in time and try that choice again.

You decide to thrombolyse. Tomas will need to go to PICU after thrombolysis but there isn’t a PICU at your hospital.

Do you…

You opt for thrombolysis at the regional centre but will you…

You work fast to mobilise your anaesthetist, ED nurse and emergency kit as quickly as possible.

Tomas arrives at the regional centre at 19:15, 5 ¼ hours after the onset of his symptoms.

It is too late to thrombolyse.

Let’s hop in the time travel machine and go back in time to decide whether to transfer for thrombolysis or thrombolyse in your ED (Hint: you may want to thrombolyse in your own ED as the clock is ticking…)

The retrieval team are mobilised. They collect Tomas from your ED and deliver him safely to the regional centre at 19:15, 5 ¼ hours after the onset of Tomas’ symptoms.

But it’s now too late to thrombolyse.

Let’s hop in the time travel machine and go back in time to decide whether to transfer for thrombolysis or thrombolyse in your ED (Hint: you may want to thrombolyse in your own ED as the clock is ticking…)

Time is critical,” you think to yourself, and tell the team you’re going to thrombolyse in resus.

Tomas is thrombolysed with tissue plasminogen activator (tPA for short) at 18:00, 4 hours after onset of symptoms. His symptoms start to improve.

After intensive neuro-rehab he has no residual neurological deficit.

He grows up to become a professional football player for Bayern Munich, scoring a hat-trick to win the 2028 UEFA champion’s league.

Congratulations! You successfully treated a stroke in childhood. Now close the toggles and read on…

Although you opt for angiographic thrombectomy, the interventional neuroradiologist is on study leave and no-one is able to cover.

You suspect they are actually scared of children.

Either way Tomas can’t have the clot removed. You’re going to have to choose again.

You phone the neurosurgeons and ask them to do a hemicraniectomy.

They ask you to go through all his neurology and review his imaging.

They say “Sorry, but his PedNIHSS isn’t high enough for us to take to theatre.”

You think, “PedNIHSS?” and make a mental note to look it up later.

Let’s try that choice again.

After your shift you do a quick google search to look at the evidence around using tPA in children and you stumble across this paper:

Rivkin, M.J., deVeber, G., Ichord, R.N., Kirton, A., Chan, A.K., Hovinga, C.A., Gill, J.C., Szabo, A., Hill, M.D., Scholz, K. and Amlie-Lefond, C., 2015. Thrombolysis in pediatric stroke study. Stroke. 2015: 46(3); 880-885.

Rivkin’s team were part of a huge multi-state stroke research team in North America. They designed the incredibly well thought out and well put together TIPS (Thrombolysis in Paediatric Stroke) study, to look at (A) safety of and (B) dose of tissue plasminogen activator (tPA) in children presenting with and arterial ischaemic stroke (AIS). They set out to recruit children aged 2 – 17 with acute AIS and PedNIHSS score between 4 – 24 to receive tPA if initiated within 4.5 hours of symptom onset. Centres were given protocols to manage complications such as intracranial haemorrhage, systemic bleeding, hypotension or angioedema.

Sounds good, right?

Well, in principle, yes.  The study opened in April 2012 but closed only 20 months later in December 2013 because only 1 child had been enrolled and they hadn’t actually been treated due to complications following extubation prior to tPA administration. 

93 children had been screened with 43 having confirmed AIS and the other 50 having a stroke mimic such as migraine, seizure or tumour etc. 

Of the 43 children with AIS about half had medical contraindications to tPA (including moyamoya disease & anticoagulation treatment); 10 were outside the treatment window (including 1 who missed the treatment window by 15 minutes due to delay at scanner); some had a PedNIHSS that was too low ; 1 had a PedNIHSS that was too high; and a couple didn’t have arterial occlusion on imaging.

But it wasn’t a total disaster. Preparing for TIPS also led to the development of Paediatric Stroke Networks in North America.  And designing the TIPS study led to consensus guidelines on the management of stroke in children.

These consensus guidelines derived from the TIPS study design have been extrapolated to the 2017 RCPCH Stroke in Childhood guideline, based on expert opinion and the best available evidence. As well as the full guideline, there’s a simple, easy to follow pathway poster that can be grabbed for quick reference whenever a child presents with potential stroke symptoms.

The poster gives a list of potential stroke presentations, from an unexplained persistent drop in GCS, through acute focal neurology (even if resolved), focal seizures, headaches, ataxia, dizziness, speech disturbance and a prompt to consider stroke in children with sickle cell disease.

It includes a simple, easy to follow, Paediatric National Institute of Health Stroke Scale (that PedNIHSS we’ve talked about) a bit like a Glasgow Coma Scale but specific for paediatric stroke.  The PedNIHSS makes up a really important part of the neurological assessment, a way of scoring the severity of the stroke. It is vitally important that the PedNIHSS is calculated because if the score is very low, with a very minimal deficit at the outset, the risk of thrombolysis outweighs the potential benefit. And if the PedNIHSS score is very high, it’s likely that the child has a very large area of brain damage, with a high risk of haemorrhage into that infarcted territory, again making the risk : benefit ratio too risky. The child’s PedNIHSS score guides your subsequent management.

The pathway lists investigations (which must include coagulation profile and group and save, because of that risk of bleeding), monitoring and neuroimaging. Timing of imaging is key. The guideline states that children should be scanned within 1 hour of presentation to the ED. Pragmatically, this is usually CT with CTA (the angiography component to look at the arteries), because organising an MRI with MRA takes longer. But, if you’re in an institution with great access to MR and you can get your imaging within an hour of presentation then it’s definitely worth a discussion with the radiologist.

If a child has a confirmed AIS, what do we do? The guideline offers two either / or treatments: EITHER aspirin 5mg/kg within an hour, as long as there is no parenchymal haemorrhage OR thrombolysis. The guideline suggests that thrombolysis may be considered in children aged 2-8 and could be considered in children over 8 (some careful wording there because extrapolating evidence from adult studies to an 8 year old is easier than to a 2 year old) provided the PedNIHSS is between 4 and 24 and tPA can be administered within 4.5 hours of symptom onset. There must be either MRA evidence of thrombus or normal or only minimally ischaemic changes on CTA (no huge areas of ischaemia, because the risk of bleeding into it is just too high), with or without evidence of thrombus. And as the biggest risk of giving tPA is haemorrhage, there must be no contraindications, such as abnormal clotting, an underlying bleeding disorder, malignancy, hypertension or moyamoya disease.

It’s really important to note that the treatment for AIS is not the same as for a child with a haemorrhagic stroke (these children need urgent discussion with a neurosurgeon for consideration of evacuation) or a child with an ischaemic stroke secondary to sickle cell disease (pick up the phone, call a haematologist and organise an exchange transfusion). Although not included on the poster, the guideline summary and full guideline give indications for surgical and endovascular interventions in stroke, as well as those nuggets for managing stroke in a child with sickle cell disease or haemorrhagic stroke.

And what about thrombectomy? This is a very active area of interest. In the world of adult AIS there has been a big move towards primary clot removal by thrombectomy rather than clot busting with thrombolysis. In the world of paediatric stroke, although there are some published case series and case reports, we don’t have a clear evidence base or national guidance. Yet.

So, what is the take-home from Tomas’ case? Although stroke is rare in children, it does occur. Thrombolysis is a potential management option given the right conditions, as long as it’s given within the 4.5-hour window. So, next time you see a child with stroke-like symptoms, send bloods early, get early neuroimaging with angio, and pull out the RCPCH Stroke in Childhood poster.

With special thanks to Dr Dan Lumsden, Paediatric Neurologist at the Evelina London Children’s Hospital, who inspired the creation of Tomas’ case and presented him so fabulously at the Royal Society of Medicine. Thank you, Dan.