Talk ortho like a pro

Talk ortho like a pro

Cite this article as:
Orla Callender. Talk ortho like a pro, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.30463

Clear and structured communication between the emergency and orthopaedic team is paramount to ensuring a smooth transfer of care for children with fractures and traumatic injuries. Use this checklist to structure your referrals to ortho like a pro, and test your x-ray interpretation skills with the quiz below.

History

Injury is force meets child; child is damaged. Force causes an easy-to-remember event – shock, pain, ‘crack’, blood, fear – so there will always be a history of an injury. When taking a history, remember the six honest men: when, how, where, what, who and why.

In addition to a full history of presenting complaint and past medical, vaccination and developmental history, a trauma history should include:

  • Date and time of injury
  • Exact mechanism of injury when possible, preferably in parent’s or child’s own words
  • Environment in which the injury occurred
  • Symptoms at time of injury and subsequently
  • Hand dominance for upper limb injury
  • Analgesia administered
  • Fasting status
  • Relevant past medical history such as bleeding disorders

Sadly, we must always remain vigilant for signs of non-accidental injury (NAI). The presenting injury needs to reasonably fit with the account as to the mechanism of injury.

Examination

Whilst the majority of the examination of a traumatic injury is centred on the affected site, the examination must always include:

The examination should be broken down into:

  • Inspection
  • Palpation
  • Movements and gait
  • Neurovascular status
  • Special tests

Imaging

Fractures can generally be identified on an AP and lateral radiograph. Use a systematic approach and apply the rule of two’s.

Apply rule of twos:

  • Two views as standard; occasionally other views may be required
  • Two joints viewed
  • Two sides where comparison of normal is necessary
  • Two occasions before and after procedures or in specific instances (such as when a scaphoid fracture is suspected)

A fracture may appear as a lucency (black line) where a fracture results in separation of bone fragments or as a dense (white) line where fragments overlap. If bone fragments are impacted, then increased density occurs which may be the only radiological evidence that a fracture exists.

Sometimes, there is no direct evidence of a fracture and instead, we need to rely on indirect evidence. Looking for radiological soft tissue signs can provide clues to fractures. These include displacement of the elbow fat pads or the presence of a fluid level.

The AABCS approach, described by Touquet in 1995, can be used to carry out a structured interpretation of a limb x-ray.

Key points:
•   Examine the entire radiograph in detail before concentrating on the area of concern – Look at the whole x-ray and the x-ray as a whole
•   Remind yourself of mechanism of injury – Are the radiographic findings relevant to patient history? How do the findings correlate with clinical findings? Do you need to re-examine the patient?
•   Take an x-ray before and after procedures
•   Get help – If the x-ray doesn’t look right ask someone else, and ensure there is a backup reporting system in place
•   Document both what you see and what you don’t see on the x-ray

Describing fractures

Fractures are described systematically. Start with the site (name and part/portion of bone), then extent (fracture type/line, open/closed, articular involvement), then describe the distal fragment (displacement and angulation). Describe any involvement of the skin and damage to related tendons and structures such as nerves or blood vessels.

Describing the site

Long bones are often described based on thirds: proximal, middle (diaphyseal) and distal segment. Including nearby anatomical landmarks (head, neck, body /shaft, base, condyle, epicondyle, trochanter, tuberosity etc.) helps describe the area of interest.

In paediatrics, fractures are described including the anatomical divisions of the bone segments: the epiphysis, the epiphyseal plate, the metaphysis and the diaphysis.

  • The diaphysis is the shaft of the bone
  • The physis is the growth plate. Also known as the epiphyseal plate, the physis occurs only in skeletally immature patients and is a hyaline cartilage plate in the metaphysis, at the end of a long bone.
  • The metaphysis lies between the diaphysis and the physis. An easy way to remember this is to think of the word metamorphosis – a change; the metaphysis is the area of change between the physis – the growth plate – and the diaphysis – the shaft. The metaphysis is only used to describe a bone before it matures – it is the growing end of the long bone. Metaphyseal fractures are almost pathognomonic of NAI. They are also known as corner fractures, bucket handle fractures or metaphyseal lesions
  • The epiphysis sits above the growth plate – epi (Greek for over or upon – like the epidermis) – physis – upon the physis

Describing the extent

For revision of specific terms to use to describe the type of fracture, see the fracture terminology glossary below. Key characteristics to add include whether the fracture is open or closed, and whether the fracture is intra-articular (inside the joint capsule) or extra-articular. Extra-articular fractures are usually less complicated.

Describing the distal fragment

There is a convention to ensure that the same injury is described in the same way: angulation, displacement, and dislocation are described by where the distal fracture fragment is in relation to the proximal fragment, or in the direction of the fracture apex.

Displacement is the loss of axial alignment: dorsal (posterior), volar (anterior) or lateral displacement of the distal fragment with respect to the proximal fragment. The degree of displacement can be roughly estimated from the percentage of the fracture surfaces in contact. Where none of the fracture surfaces are in contact, the fracture is described as having ‘no bony opposition’ or being ‘completely off-ended’, and are potentially unstable. Displacement is usually accompanied by some degree of angulation, rotation or change in bone length.

Angulation is the angle created between the distal fragment and the proximal fragment as a result of the fracture. The anatomical reference point is the long axis. Angulation is described using words like: dorsal / palmar; varus / valgus; radial /ulnar. It may be described either by reference to the direction in which the apex of the fracture points (apex volar or apex dorsal) or by indicating the direction of the tilt of the distal fragment. Medial angulation can be termed ‘varus’, and lateral angulation can be termed ‘valgus’. To measure angulation, one line is drawn through the midline of the shaft. A second line is then drawn through the midline of the fragment and the angle can now be measured.

Rotation is present when a fracture fragment has rotated on its long axis relative to the other. It may be with or without accompanying displacement or angulation. It is more readily diagnosed on clinical examination.

Finally, perfecting your referral

Referrals to the orthopaedic team, using a framework like the ISBAR tool, should start with the child’s name, hospital number and who is attending with the patient. Then proceed to give a history, including a full history of the presentation, hand dominance, fasting status and any relevant clinical risk factors such as bleeding disorders. Describe your clinical findings, including neurovascular examination, and then the radiological findings in the order of:

  • the bone(s) involved
  • part of bone
  • type of fracture
  • fracture line
  • extent of deformity and angulation
  • and any associated clinical findings

Describe any other investigations, management to date and on-going treatment. Summarise events that have occurred before referral – analgesia, backslab casts, splints, antibiotics, tetanus boosters, wound cleansing, dressings etc.

As with any good referral, be clear about why the child is being referred. It may be reasonable to transfer full care of a child. Or, the referral may simply be to gain a second opinion on the diagnosis followed by management. Be clear about the type of care expected. And finally, discuss whether you feel the referral is urgent or not. It should be stated how quickly you expect the patient to be seen. Do you feel they need to be seen urgently, soon or routinely?

At this stage, a management plan and expected outcome can be discussed and agreed. This information can then be reiterated to the child and family. Make sure everything is clearly and concisely documented.

Done!

Fracture terminology

Non-displaced fracture: A fracture where the pieces of the bone line-up.

Displaced fracture: The pieces of the bone are out of line.

Closed fracture: Either the skin is intact or, if there are wounds, these are superficial or unrelated to the fracture.

Open / compound fracture: A wound is in continuity with the fracture site.

Unstable fracture: A fracture with a tendency to displace after reduction.

Complete fracture: The fracture line extends across the bone from one cortex to the other separating the bone into two complete and separate fragments.

Greenstick fracture: Only one cortex is fractured.

Torus / buckle: Buckling of the cortex with no break.

Comminuted: There are more than two fragments.

Transverse fracture: A fracture across the bone.

Oblique fracture: A fracture at an angle to the length of the bone.

Spiral fracture: A fracture that curves around the bone diameter.

Depressed: A portion of bone is forced below the level of the surrounding bone.

Avulsion fracture: The muscle have torn off the portion of bone to which is attached.

Stress fracture: Tiny cracks in the bone caused by repetitive injuries. A cortical break is not always seen but there is greying of the cortex due to callus formation.

Pathological fracture: A fracture arising within abnormal bone weakened by benign or malignant cysts or tumours.

Impacted fractures: One fracture fragment is driven into the other.

Plastic deformation: Deformation of bone without fracture of the cortex.

Epiphyseal fractures: A fracture to the growing end of a juvenile bone that involves the growth plate. Use the Salter-Harris classification if the fracture involves the epiphyseal plate.

Fractures don’t always occur in isolation – a joint may be involved.

Fracture-dislocation: A dislocation is complicated by a fracture of one of the bony components of the joint, such as a Galeazzi or Monteggia fracture-dislocation.

Subluxation: The articulating surfaces of a joint are no longer congruous, but loss of contact is not complete.

Dislocation: Complete loss of contact between the articulating surface of a joint. Displacement of one or more bones at a joint.

References

Bickley S. & Szilagyi P. (2003) Bates’ Guide to Physical Examination and History Taking (8th edn.) Philadelphia. J.B. Lippincott, Philadelphia.

Davis, F.C.W., 2003. Minor Trauma in Children. A pocket guide. London: Arnold.

Duderstadt, K. 2006. Pediatric Physical Examination. Mosby. Elsevier.

Purcell, D. 2003. Minor Injuries. A Clinical Guide. Edinburgh: Churchill Livingstone.

Larsen, D. & Morris, P. 2006. Limb X-ray Interpretation. Whurr Publishers Limited.

McRae, R. 2003. Pocketbook of Orthopaedics and Fractures. 3rd ed. Edinburgh: Churchill Livingstone.

Raby, N., Berman, L. & De Lacey, G., 2001. Accident & Emergency Radiology. A Survival Guide. Edinburgh: W.B. Saunders.

Touquet et al, 1995. The 10 Commandments of Accident and Emergency Radiology. BMJ 1995; 311: 571.

Image source for final quiz case: https://radiopaedia.org/cases/2c1840c5145638e56f599031f23dd0c8?lang=us

Wrist x-rays

Cite this article as:
Sian Edwards. Wrist x-rays, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29082

The wrist is one of the most commonly requested X-Rays in the children’s emergency department. Wrist views are requested when injury to the distal radius/ulna or carpal bones are suspected. Below is a systematic approach to interpretation.

The wrist series examines the carpal bones (scaphoid, lunate, triquetrum, pisiform, trapezium, trapezoid, capitate and hamate), the radiocarpal joint and the distal radius and ulna. 

There are eight carpal bones present and each one is named according to its shape:

  1. Scaphoid (boat-shaped)
  2. Lunate (crescent moon-shaped)
  3. Triquetrum (pyramidal)
  4. Pisiform (pea-shaped)
  5. Trapezium (irregular trapezium-shaped)
  6. Trapezoid (wedge-shaped)
  7. Capitate (head-shaped) – *the largest of the carpal bones
  8. Hamate (wedge-shaped with a bony extension, or ‘hook’)
Labelled XR of carpus
AP
Proximal carpal rowDistal carpal row
ScaphoidTrapezium
LunateTrapezoid
TriquetrumCapitate
PisiformHamate

How to best remember the carpal bones

There are many mnemonics around – some too rude for mention here! You will need to find the one that works for you… here’s one that’s super suited for clinicians working with kids:

Sam Likes To Push The Toy Car Hard

Failing that, save an image to your phone for quick reference!

Mnemonic for remembering carpal bones

Ossification

The carpal bones are formed entirely from cartilage at birth – this is important from a radiological viewpoint as it means they are not visible on x-ray initially. They begin to ossify from about 1-2 months of age and are fully developed by the age of 8-12 years. Although there is variability in the timing, the order is always the same.

  1. Capitate 1-3 months
  2. Hamate 2-4 months
  3. Triquetrum 2-3 years
  4. Lunate 2-4 years
  5. Scaphoid 4-6 years
  6. Trapezium 4-6 years
  7. Trapezoid 4-6 years
  8. Pisiform – 8-12 years

Generally, on x-ray, one carpal bone is visible every year until full development – this acts as a handy (pun intended) ageing tool!

On requesting wrist X-Rays, most commonly you will receive posteroanterior and lateral projections, with oblique views forming part of the series usually when carpal injury is suspected.

1. Check the soft tissues

Look for signs of swelling or any incidental findings.

2. Trace the bony cortices

Trace each bone in turn to look for breaks or irregularities in the cortex.

Look closely at the distal radius, proximal carpal row (especially the scaphoid) and the proximal metacarpals. Disruptions in the cortex may be very subtle as in the case of this torus fracture (aka a buckle fracture)

Buckle fracture of radius
Buckle fracture

3. Check bony alignment

On the AP view:

The distal radial articular surface should curve round the carpals with the articular surface getting more distal towards the ulnar styloid. The articular surfaces of the proximal and distal carpal rows should form three smooth arcs – these can be traced on the AP film.

The spacing between all carpal bones should be 1-2mm.

If the arc is broken or there is widening or lack of uniformity between the spaces, think about carpal dislocation.

The articular cortex at the base of each metacarpal parallels the articular surface of the adjacent carpal bone.

The carpo-metacarpo (CMC) joint spaces should be clearly seen and of uniform width (1-2mm).

The 2nd to 5th CMC joints are visualised as a zigzag tram line – on a normal view, there will always be the “light of day” seen between the bases of the 4th and 5th metacarpals and the hamate bone. If this is narrowed, think dislocation of the 4th or 5th metacarpal.

Labelled AP view of wrist
AP view

On the lateral view:

The distal radius, lunate and capitate should articulate with each other in a straight line on the lateral x-ray – the apple, cup, saucer analogy – the cup of the lunate should never be empty.

Lateral view of carpus
Normal capitate – lunate – radius alignment. Image adapted from a case courtesy of Dr Jeremy Jones, Radiopaedia.org. From the case rID: 37947

If the cup is empty, this suggests a perilunate dislocation.

Perilunate dislocation
Perilunate dislocation. Image adapted from a case courtesy of Dr Ian Bickle, Radiopaedia.org. From the case rID: 46714
The apple and cup model of perilunate dislocation
The slipped cup of the perilunate dislocation

References

https://radiopaedia.org/articles/wrist-radiograph-an-approach?lang=gb

Galeazzi fracture-dislocations

Cite this article as:
Rie Yoshida. Galeazzi fracture-dislocations, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.21150

Patrick is a 15-year-old boy who presents to the Emergency Department with a painful left arm.  He tells you he fell off his bicycle, putting out his left hand out to break the fall.  On examination, his left forearm is deformed at the wrist.  There are no open wounds and no signs of compartment syndrome. The limb is neurovascularly intact.  

He has declined analgesia in triage but you convince him to take paracetamol and ibuprofen prior to his x-ray. You order a lateral and AP film of his left forearm including the wrist and elbow.  

Th. Zimmermann [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]
His x-ray shows a distal radial fracture.  Whilst you are assessing the degree of angulation, a medical student leans over your shoulder and asks, ‘Should the head of the ulnar be sticking out like that?’. You nearly missed it but Patrick has a rare Galeazzi fracture-dislocation! 

Galeazzi fracture-dislocations consist of a fracture of the radius with dislocation of the distal radio-ulnar joint.  The fracture usually affects the distal third of the radius.

Galeazzi injuries are very rare in children (more commonly seen in the adult population).  The mechanism of injury is usually due to a fall on an outstretched hand with forearm rotation.

Examination findings

Examine the forearm, wrist and elbow joint.

Inspection and palpation: swelling, tenderness and likely deformity of the distal forearm and wrist. Check for any open wounds.

Range of movement: Maybe reduced at the wrist joint.

Check for signs of neurovascular compromise or compartment syndrome.  Ulnar nerve injury is uncommon.

Investigations

True AP and lateral X-rays of the forearm including the wrist and elbow (including distal humerus).

The key point here is if a distal to mid-shaft radial fracture is seen on  X-ray, have a good look for signs of distal radioulnar joint disruption.

Classification 

Galeazzi fractures are classified according to the direction of ulna displacement.

Galeazzi-equivalent fracture

A Galeazzi-equivalent fracture may occur in children.  This characterised by both

  • fracture of the distal radius
  • fracture of the growth plate of the ulna (separation of the ulnar physis), as opposed to dislocation of the distal radio-ulnar joint, DRUJ.

Treatment

All Galeazzi fracture-dislocations should be referred to orthopaedics on-call as a surgical intervention may be required for unstable or irreducible fractures.  The usual approach in children is conservative management with closed reduction and immobilisation in an above-elbow cast.  They should be followed up in the fracture clinic in 7 days.  Complications include malunion, compartment syndrome and nerve injury but these are more common in adults and if the diagnosis is delayed.  Children tend to have good outcomes with closed reduction and casting, even if the diagnosis is initially missed.

You are congratulated by the ED consultant for identifying Patrick’s Galeazzi fracture-dislocation.  You call the Orthopaedic surgeons.  It is a stable fracture and he has a successful closed reduction performed under procedural sedation in ED.  An above-elbow back slab is applied.  A few hours later, Patrick is ready to go home as he has recovered from the sedation.  On their way out, his mother asks you if he will recover fully.  You explain that he will be followed-up in the fracture clinic in 7 days but that his outcome should be good as the fracture was identified early and the post-reduction x-ray shows good alignment.  On your next day off, you decide to make a table of the differences between Monteggia and Galeazzi fracture-dislocations to aid your memory. 

[wpsm_comparison_table id=”10″ class=””]

*One way of remembering that both Monteggia and Galeazzi require review by orthopaedic surgeons is to remember that both fracture types are named after Italian surgeons!

Top tips

  • If you identify a distal to mid-shaft radial fracture, look for signs of distal radioulnar joint disruption or ulna physis disruption.
  • A useful mnemonic to remember the key differences between Monteggia and Galeazzi fracture-dislocations is MUGR (Monteggia fractured Ulna, Galeazzi fractured Radius)

Selected references

Eberl, R., Singer, G., Schalamon, J., Petnehazy, T. and Hoellwarth, M.E., 2008. Galeazzi lesions in children and adolescents: treatment and outcome. Clinical orthopaedics and related research466(7), pp.1705-1709.

Johnson NP, Smolensky A. Galeazzi Fractures. [Updated 2019 May 2]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2019 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470188/

Ethical considerations and decision-making about the resuscitation of very sick children

Cite this article as:
Karen Horridge. Ethical considerations and decision-making about the resuscitation of very sick children, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.30898

You wouldn’t judge a book by its cover, would you?

When thinking about the knotty matter of decision-making about resuscitation of sick children, we need to remember:

Every child’s life matters.

To always listen to the child, their parents and those who know the child best and include them in best-interests decision-making.

To always make decisions within an ethical framework and record the process of decision-making and who was involved.

To ensure pathways are in place to record and make visible best-interests’ decisions about levels of intervention.

So, what can help us with an ethical framework? Our friends at the General Medical Council have laid this out for us, in ‘Treatment and care towards the end of life: good practice in decision-making’.

Covers of GMC guidelines

This helpful document reminds us that:

  • Equalities, capacity and human rights laws reinforce our ethical duty to treat all children, neonates and young people fairly. 
  • We must always listen to child, parents and others close to them. We must take account of their views. Where there are different views, our primary duty of care is to the child.
  • Decisions must always be in a child’s best interests. 
    • We should weigh benefits, burdens and risks of treatment. 
    • We should consider all relevant factors in the decision-making process.
  • Decisions must start from a presumption in favour of prolonging life.

When making decisions, even in a dire emergency, we are reminded to:

  • Take account of up-to-date, authoritative clinical guidance.
  • In case of uncertainty, seek further expert opinions early.
  • Explain, justify and document all factors considered in decision-making.
  • Not rely on personal values when making best interests’ decisions.
    We must be careful not to make judgements based on poorly informed or unfounded assumptions about the impact of disability on the child or young person’s quality of life. 

So, you wouldn’t judge a book by its cover, would you?

Disabled children and young people come in all shapes and sizes. We can’t all be experts in each child, which is why it is so important for us to listen to parents and those who know the child best.

Please do beware of falling down the rabbit hole of preconceived ideas about what a child’s quality of life is like – always ask parents and familiar carers what the child is like when well. They may have photos and videos they can show you of their child having fun and taking part in everyday activities.

Disabled children may appear, sound and behave differently when unwell. This may be because they cannot tell you where it hurts or how they feel. They may present with behaviours that others may see as challenging. They may not tick the expected boxes on the usual screening tools, for example, for sepsis. Their temperatures may be low when you might expect them to be high, they might have high or low heart rates and may not be able to mount the expected increased work of breathing, because their respiratory muscles may be too weak for them to do so. Their control centres may not work as expected.

Hasty decisions based on preconceived ideas can lead to poor outcomes, including premature death. None of us want that.

So, what’s all this about premature death in people with learning disabilities?

If you are ready for a shocking read, then take a look at Death by Indifference, written by Mencap in 2006, but just as relevant today.

If you prefer some e-learning on the subject, take time to work through the Disability Matters session: Equal Access to the Best Health Outcomes Matters. This was co-produced with disabled children, young people, parent carers and other experts.

Then there’s the Confidential Inquiry into Premature Deaths of People with Learning Disabilities report. This report showed that women and men with learning disabilities die 29 and 23 years, respectively, sooner than women and men without learning disabilities.

So what about children? The series of reports on Why Children Die show that more than half of all children who die in England have a pre-existing, life-limiting condition. So, we all need to pay great attention and ensure we achieve the very best outcomes for these children and all children.

The team at Bristol University have built on the work they did for the CIPOLD report and now lead on the Learning Disabilities Mortality Review (LeDeR) programme. This links to the Child Death Review programme and considers the circumstances of every death of anyone with a learning disability at any age. The latest annual report can be found here.

Between 01/07/2016 and 31/12/2019, 516 children aged 4-17 years were notified to the LeDeR programme. Of these children and young people who died, 43% were from Black and Minority Ethnic groups. 46% had profound and multiple disabilities.

Whilst 7% of the deaths reported to the LeDeR programme were of children and young people aged 4-17 years, the death rate overall in the 5-19 years age group in England was 0.3%.

The LeDeR programme 2019 report highlights good and problematic practices that the multidisciplinary team, including people with learning disabilities, identified.

Good practices included:

  • Good care coordination across agencies and specialities
  • Excellent end-of-life care
  • Person-centred care, adjusted as the child or young person’s needs changed

Problematic areas of practice to reflect and learn from included:

  • Delays in responding to signs of illness or investigating illness.
    • This is known as ‘diagnostic overshadowing’, where clinicians may see the disabilities and think all presenting signs and symptoms can be explained by those, rather than undertaking a careful and structured clinical assessment to identify the underlying cause, such as pain from appendicitis, constipation, sepsis etc.
  • Poor quality multidisciplinary team working.
    • The needs of disabled children and young people are usually multifaceted and require a range of expertise to adequately assess and address them all.
  • Poor advanced care planning. 
    • Clinicians can be reluctant to have those difficult conversations with families about the risk of both sudden and unexpected death and also the risk of deterioration and death. We all need to do better on this.
  • Problems with the direct provision of care.

Recommendations from the LeDeR report included:

  • Identification of a key worker to coordinate care and communication for disabled children and young people.
  • Timely advanced care planning embedded in care pathways and clinical practice, responsive to changing needs.
  • Better discharge planning and better community support.
  • Consistent support and communication throughout each child’s life.

So where is the evidence about what parents think about end-of-life decision making? Dr Sarah Mitchell is a GP who is really interested in this and has written a useful paper in BMJ Open on the subject.

Sarah and her team interviewed parents and reported that:

  • Parents have significant knowledge and experiences that influence decision-making process
  • Trusted relationships with healthcare professionals are key to supporting parents making end of life decisions
  • Verbal and non-verbal communication with healthcare professionals impacts on the family experience.
  • Engaging with end of life care decision-making can be emotionally overwhelming, but becomes possible if parents reach a
    ‘place of acceptance’
  • Families perceive benefits to receiving end of life care for their child in a PICU 

With regard to the last statement, preferred place of death is, in my experience, different for each family. Some choose home, others need to know that no stone has been left unturned right to the end, so choose intensive care. Whilst this may not always sit comfortably with paediatric intensive care teams, for some families it is what is needed to bring them peace in their journeys of grief. I have been witness to what I would consider to be ‘good deaths’ in a wide range of settings, including homes, hospices, children’s wards and intensive care units over many years. What matters most and what families remember, are how the child’s needs were identified and addressed at every step and how they are families were kept in the loop about what was happening, including being fully involved in all decision-making.

Smiling boy with disability
Matthew

It’s all well and good listening to my views as an experienced disability paediatrician on the subject, but much better to hear directly from a mother who has been on the advance care planning journey. Here are Kay’s words, describing her and her family’s journey with her son Matthew. If you prefer to hear her speaking directly, please check out the Disability Matters e-learning session Advance Care Planning Matters.

Kay says:

“Matthew had quite severe learning and physical disabilities. He was a very complex child and we used the Emergency Health Care Plan to help plan for the future and to enable us to communicate fully with other health professionals in the healthcare setting. 

Matthew didn’t have the capacity to actually make decisions for himself although he was a very wilful little boy who had very clear likes and dislikes, so he could make decisions for himself that were relevant to his day to day needs like what he wanted to eat, where he wanted to go. He had no formal communication, but as parents and the people who were involved with him we learned to read what he was trying to tell us, and as I say, he was very clear on what he liked and disliked doing but wouldn’t have been able to make the kind of big decisions that as parents we were responsible for making for him.

We did have a very large team involved in Matthew’s care and we discussed the Plan with his consultant paediatrician but she also took into account the views of people like the occupational therapists, physiotherapists, the surgeons who were dealing with him as well as the parents, myself and Matthew’s dad. We were all involved in the discussions around the development of the Plan and what was in his best interests.

Matthew’s Health Care Plan went everywhere with him and it lived in his communication bag on the back of his wheelchair. So it went with him to school, to his respite and to his dad’s house when he was there and also it was with him whenever he needed to go into hospital.

The Emergency Health Care Plan actually protected Matthew’s rights should he ever become seriously unwell. It clearly stated that he needed full resuscitation and any treatment that was available to him and clinicians then could use the plan to make judgments on what treatment would be necessary but he was able then to access a full range of treatment that would be available to any other child in a similar circumstance.

Matthew was very well for the early part of his life but when he turned 11 he had an accident, a quite serious accident and we were able to use the Emergency Healthcare Plan to access full range of medical interventions for him, as a result of that he did end up in intensive care for the first time. After that we did go through a period when he was 12 he had a twisted bowel, so he was literally in and out of intensive care and needed to be resuscitated on quite a few occasions, unfortunately, but his plan enabled us to access all of this medical intervention for him and saved his life in that instance.

Over a period of about a year, Matthew became more and more unwell. He needed regular trips to Intensive Care and regular trips to the hospital. The Plan actually went with him to hospital in Newcastle. It gave us the assurance that during these periods of Matthew being very, very poorly that the doctors in the hospital that weren’t used to dealing with Matthew, the Plan gave them all the information so we didn’t have to go through it every time that he was admitted. They trusted what we were saying because it was backed up by the Plan”.

Matthew’s paediatrician says:
“Matthew developed a lot of new symptoms that were unexplained; his seizures were becoming less controlled and we needed discussions around how we were going to treat these new symptoms as and when they appeared and what needed to be done for them.

So at this point in time, having taken account of the views of both of Matthew’s parents and the whole of the multidisciplinary team, we made a decision in his best interests that, at that time, further intrusive procedures or further intensive care was not going to be helpful or appropriate for him and might cause him further distress. So, together, we changed the wording on Matthew’s Advanced Care Plan at that time to reflect the possibility of him being allowed a natural death when his time came, recognising that we would always be there to manage his symptoms and always be there to support his family”. 

Kay continues:
“Matthew had had a chest infection and was having great difficulty breathing and his dad brought him up to hospital. We called all the family, it was obvious that Matthew was dying at this point. We had all the family called from all corners of the UK to come and say goodbye to him. We sat for hours and hours with him in the hospital ward and he was almost pronounced dead when all of a sudden, he decided it wasn’t quite his time and he took a great big breath and started breathing normally and all his colour came back. His dad described it as, like, “re-booting” his system as he wasn’t on any treatment. He was having no medication or anything and he just decided “No, it’s not my time. I’m going to come back” and we had him for another five weeks after that.

Then one day, approximately five weeks after the “re-booting” incident, Matthew wasn’t very well at all. He was due to see his paediatrician in clinic that day, but I phoned and said that “I don’t think he’s up to actually travelling to hospital,” so the paediatrician agreed to visit at home, so we waited. He’d had a massive seizure. I’d had to give him medication to bring him back from the seizure. When his paediatrician arrived, it became obvious that he was deteriorating very, very quickly and we decided that we were just going to keep him at home and see what the outcome would be, whether he would “re-boot” again or how it would play out this time”.

Matthew’s paediatrician continues:
“So Matthew was really very frail on clinical assessment at this point, so I needed to put in place the right procedures to make sure that his needs were met and the family’s needs were met. He was very peaceful and he was essentially drifting off to sleep. He didn’t have any difficult symptoms at that point that needed any changes in medication or changes in his Plan. What we did at that point is I made arrangements for if Matthew was to slip away in the night, a colleague to be able to come out and support the family and to confirm his death at that point. I also contacted the Coroner, because our Coroner liked to know in advance about any child’s death and if there is a death that is likely to be expected as defined under the Child Death Review Procedures, then our Coroner liked to know in advance. So, we made all of those arrangements and let the family have their special private time together”. 

Kay reflects:
“We spent quite a few hours with Matthew – we called close family this time around. We didn’t get everybody coming from the far end of the country to be with Matthew. So, the time when Matthew did die, it was very, very peaceful. We had some quality time with him. We had a wonderful five weeks planning memories, planting memories for the other children and we spent those few hours reflecting on that and talking and supporting each other through the inevitable outcome of Matthew dying in the early hours of the morning.

We found that, when dealing with the professionals around Matthew’s death, that being able to change the wording of the Emergency Health Care Plan it kind of validated for us that what we wanted … we wanted Matthew to be peaceful and at home when he died, surrounded by his toys and his family. We felt that the Plan, when we read the wording of it, was quite a shock to see that he should be allowed to ‘die with dignity’ but it validated what we were feeling, that it gave us permission to ask that he could die at home where we wanted him to be. It made us feel that we weren’t asking for anything that was out of the ordinary or not possible and felt that we were actually more in control of the situation when the time actually came for Matthew to pass away”. 

Achieving a supporting a child or young person through a good death is an important part of our job, when death is inevitable. We need to ensure we always steer the best possible course through the tricky waters of decision-making, protecting the rights of all children and young people to the best possible outcomes.

So, back to the key messages

  • Every child’s life matters.
  • Always listen to the child, their parents and those who know the child best and include them in best-interests decision-making.
  • Always make decisions within an ethical framework and record the process of decision-making and who was involved.
  • Ensure that pathways are in place to record and make visible best-interests’ decisions about levels of intervention.

If you want to read more about advance care planning, look at:

Horridge KA. Advance Care Planning: practicalities, legalities, complexities and controversies. Arch Dis Child. 2015;100:380-385

If you want to see and hear examples of the conversations that underpin advance care planning, more free e-learning can be found here:

https://councilfordisabledchildren.org.uk/our-work/health-and-wellbeing/practice/emergency-healthcare-plans

To listen to discussions between paediatricians and a parent about signs of sepsis in disabled children, tune in to Episode 4 of the RCPCH sepsis podcast series here.

Thank you for your time and all the best for your advance planning and decision-making.

PEM Adventures Chapter 2

Cite this article as:
Team PEM Adventures. PEM Adventures Chapter 2, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.30926

Are you ready for another PEM adventure? This time the stakes are a little higher. Join us on another journey (with an inbuilt time travel machine) as we manage Grace…

Teenager holding mobile phone

Meet Grace. Grace is a 15-year-old vegetarian environmental activist. She’s thrilled because she’s recently hit a TikTok following of 10,000 – social media is SO the way to spread the word.

She spent yesterday at an illegal climate strike rally outside parliament. Buoyed up on the adrenaline of a thrilling protest, she and some buddies went back to her friend, Zak’s house where they celebrated in style with vodka pops. But this morning, horrified by the fact Grace was impossible to wake, Zak called the emergency services.

Meanwhile, you’ve just fished a pea out of a child’s ear when the red phone rings. Hearing the pre-alert, you mobilise the team and prep a bay in resus. Minutes later, Grace is wheeled in with Zak in tow and she’s transferred to a trolley.

Whiteboard containing vital signs

Your SHO, Lucy, does a primary survey:

  • A: Tolerating an oropharyngeal airway. No stridor or stertor.
  • B: Self-ventilating in 15L O2 via a non-rebreathe mask. Respiratory rate is a bit raised but her chest is clear and she doesn’t have any other signs of respiratory distress.
  • C: Warm and well perfused, heart rate 68 with normal heart sounds and normal pulse volume. Blood pressure is 115/70 and capillary refill time is less than 2 seconds.
  • D: GCS 7, made up of M4, V2, E1. Pupils are size 3 bilaterally and normally reactive to light. Tone is generally low but reflexes are normal and plantars are down going.
  • E: No rashes, no bruises and Grace is currently afebrile.

Lucy gets Grace’s mum’s number from Zak and phones her to get a bit more information. Grace is a healthy adolescent with no significant past medical history. She’s not on any medications, is not allergic to anything and is fully vaccinated. She’s been completely well with no fever, cough, coryza, or any other symptoms. She did have a cold sore a few months ago – could that be relevant?

Grace’s parents, who had gone away for the first time since covid-lockdown lifted, are running to the train station to make their way back home.

Back in resus, you put in a cannula, and send off some bloods: FBC, U&E, LFT, CRP, blood culture and an alcohol level.

Her venous gas shows a pH of 7.47, pCO2 of 2.7, bicarb 14, lactate of 2.7 and normal glucose.

Blood gases showing respiratory alkalosis

That’s odd, you think to yourself, a respiratory alkalosis with some metabolic compensation. You pause for a second and work through your list of possible causes.

  1. Could this be a central cause of hyperventilation? A bleed? A tumour? A meningoencephalitis? You put up a request for CT brain. 
  2. Could this be a respiratory cause? Asthma? Pneumonia? Pneumothorax? Better get a chest x-ray too.
  3. Could this be sepsis? You prescribe ceftriaxone and add acyclovir. There was that coldsore after all…
  4. Pregnancy?
  5. Endocrine or hypermetabolic cause? Maybe DKA? No… her blood sugar’s normal. Or thyrotoxicosis?
  6. Maybe it’s something toxicological? You remember, from your undergraduate days, learning that salicylates cause a respiratory alkalosis.

You add a salicylate level, and paracetamol for good measure, add thyroid function and ask for a catheter urine for beta HCG and a tox screen.  

But her catheter urine doesn’t give you any extra clues. Grace’s urine beta-HCG is negative, her tox screen is negative and her dip is negative.

The resus nurse gently touches your elbow and quietly says, “Do you want to call the anaesthetist?

Good question, you think to yourself. Her GCS is 7 and she’s tolerating the oropharyngeal airway, but she’s breathing well for herself at the moment. What do you want to do?

There are some compelling arguments not to intubate; Grace is maintaining her airway and she’s obtunded and may have seizures – if you give her a paralysing agent as part of her RSI you’ll never be able to tell. Sure, if you really want to monitor for seizure activity, AND you’re in a a tertiary centre with a PICU with capability of CFM or EEG monitoring, you could keep arguing you can monitor for seizure activity while she’s intubated and ventilated, but it takes a while to set up, and time is of the essence.

So you make the brave decision not to intubate. 

You later decide it was less brave and more foolhardy. While Grace is in CT she drops her GCS further and then has a respiratory arrest, which quickly deteriorates into cardiac arrest. The scanner is a terrible place for CPR. While you’re trying to run an arrest on a narrow CT bed you wish you could go back in time and make that choice again. Luckily for you, the inbuilt PEM adventures time travel machine can do just that. In you hop and whizz back to resus.

Close the toggle and this time click on the ‘intubate’ choice.

There are some compelling arguments not to intubate; Grace is maintaining her airway and she’s obtunded and may have seizures – if you give her a paralysing agent as part of her RSI you’ll never be able to tell if she’s seizing. 

But there’s something niggling you… Grace is heading for a CT scan and the LAST thing you need is for her to arrest in the scanner.

And yes, it’s true, there is a risk you could miss a seizure if she was paralysed, but you can give her a long-lasting anticonvulsant to prevent seizures. 

So… you decide to follow your gut and make the decision to intubate.

Thankfully the anaesthetist is nifty with a tube and she’s already drawn up the RSI drugs – fentanyl, ketamine and rocuronium in a 1:1:1 ratio (that’s fentanyl 1mcg/kg, ketamine 1mg/kg and rocuronium 1mg/kg). She’s intubated without difficulty. 

Grace has bilateral equal breath sounds and a mobile chest x-ray shows the tube to be in a good position, with clear lung fields and normal heart size. You mentally cross respiratory causes of an alkalosis off your list.

You’re doing great.

The anaesthetist asks you, “How should I ventilate Grace? Should I match her raised respiratory rate?

That’s a good question, you think to yourself. What should you do?

This is a very good question and you’re not sure you know the answer. Grace is hyperventilating for some reason, and maybe mimicking this is the right thing to do…

But, you’re worried about her ultra low pCO2. At 2.7 it’s likely to be causing cerebral vasoconstriction and hypoperfusion. It’s time to start some simple, proactive neuroprotective measures.

On reflection, you decide it would be better to slow Grace’s breathing so resolutely you turn back to the anaesthetist and ask him to SLOW Grace’s respiratory rate to keep her end tidal CO2 tightly between 4.5 and 5; you want to prevent secondary brain injury.

He nods his assent, while tilting the head of the bed up to 30 degrees.

But, remembering a great DFTB post by Costas Kanaris, you know you can do more than that to neuroprotect. As well as maintaining normocapnia and nursing her at 30 degrees head in line, Grace needs strict normothermia and hypoxia should be avoided at all costs. She needs vigilant glucose monitoring, tight circulatory monitoring and support and an anticonvulsant to prevent seizures. 

Close the toggle and move on to the next part of the story.

You think this through. The alkalotic pH doesn’t matter quite so much, what’s really troubling you is Grace’s pCO2. With a pCO2 of 2.7, there’ll be huge amount of cerebral vasoconstriction and hypoperfusion. It’s time to start some simple, proactive neuroprotective measures.

Resolutely you turn back to the anaesthetist and ask him slow Grace’s respiratory rate to keep her end tidal CO2 tightly between 4.5 and 5; you want to prevent secondary brain injury and so now’s the time to start some neuroprotection.

He nods his assent, while tilting the head of the bed up to 30 degrees.

But, remembering a great DFTB post by Costas Kanaris, you know you can do more than that to neuroprotect. As well as maintaining normocapnia and nursing her at 30 degrees head in line, Grace needs strict normothermia and hypoxia should be avoided at all costs. She needs vigilant glucose monitoring, tight circulatory monitoring and support and an anticonvulsant to prevent seizures. 

Great choice! Close the toggle and move on to the next part of the story.

With fortuitous timing, CT ring down to say they’re ready for Grace.

Satisfied that A, B and C are all stable, you turn to take the brake off the trolley when Lucy, your SHO, asks, “But do we only want a plain non-contrast CT?

That’s a good question, you think to yourself. Is that all I want? What neuroimaging will you choose?

“Yes”, you say to Lucy. “A non-con CT is quick and will show us most tumours and bleeds. She can have an MRI later to get a bit more detail.” 

But,” your SHO counters, “a non-con CT won’t always detect an ischaemic stroke. Perhaps we should ask for a CTA too?

You remember a case from a few weeks ago, a little boy called Tomas. You’d bookmarked the RCPCH Stroke in Childhood guideline on your phone. You quickly bring it up and Lucy’s right, the guideline says to consider stroke in children with focal neurology, speech disturbance, focal seizures, severe headache, cerebellar signs… and unexplained decreased conscious level.

Smiling gratefully at Lucy you pick up the phone and ask the radiologist if you can add a CTA. They say yes.

Minutes later, Grace has her CT with CTA… but it’s normal. No abscess… no tumour… no bleed… and no stroke.

Well that’s good news for Grace, you think to yourself, but it doesn’t give you any much-needed clues.

Great work. Close the toggle and move onto the next part of the story.

You know what”, you say to your SHO, “let’s ask for a contrast-enhanced CT. It’s still quick and will give us a little more detail than a non-con CT.

But,” she counters, “do you think we should be considering stroke in our differential? Perhaps we should ask for a CTA too?

You remember a case from a few weeks ago, a little boy called Tomas. You’d bookmarked the RCPCH Stroke in Childhood guideline on your phone. You quickly bring it up and Lucy’s right, the guideline says to consider stroke in children with focal neurology, speech disturbance, focal seizures, severe headache, cerebellar signs… and unexplained decreased conscious level.

Smiling gratefully at Lucy you pick up the phone and ask the radiologist if you can add a CTA. They say yes.

Minutes later, Grace has her CT with CTA… but it’s normal. No abscess… no tumour… no bleed… and no stroke.

Well that’s good news for Grace, you think to yourself, but it doesn’t give you any much-needed clues.

Great work. Close the toggle and move onto the next part of the story.

You know what”, you say to your SHO, “let’s ask for a CT plus CTA. The CT will show us most tumours and bleeds and she can have an MRI later for a bit more detail, but we should consider stroke in our differential, and to detect that we need to add angiography to our CT.

You think back to a case from a few weeks ago, a little boy called Tomas. You’d read the RCPCH Stroke in Childhood guideline and remember that it says to consider stroke in children with focal neurology, speech disturbance, focal seizures, severe headache, cerebellar signs… and unexplained decreased conscious level.

Smiling gratefully at Lucy you pick up the phone and ask the radiologist if you can add a CTA. They say yes.

Minutes later, Grace has her CT with CTA… but it’s normal. No abscess… no tumour… no bleed… and no stroke.

Well that’s good news for Grace, you think to yourself, but it doesn’t give you any much-needed clues.

Great work. Close the toggle and move onto the next part of the story.

You haven’t ruled out infection. So, when you’re back down in resus, you ask Lucy if she’d like to do the LP.

Really? Is that safe with her low GCS?” she questions. 

What do you think? Should you LP?

It’s fine,” you reply, “she doesn’t have physiological signs of raised ICP: she’s not bradycardic or hypertensive, she’s not posturing and she didn’t have focal neurology. Plus, her CT doesn’t look like there’s cerebral oedema.

Feeling reassured, Lucy picks up the spinal needle and performs an LP. 

But it’s not your finest decision. Grace cones and arrests. 

Luckily for you and Grace, there’s an inbuilt time travel function in your PEM adventure and you return back to resus just as your SHO asks if it’s safe to LP Grace.

You have a strange feeling of déjà vu, while a little voice tells you that although a normal CT is usually reliable for ruling out raised intracranial pressure, this isn’t failsafe and it might be safer to defer the LP for when she’s a little more stable. You’ve already started the ceftriaxone and acyclovir, so this time you decide that the LP can wait until she’s a bit more stable and can have an MRI first. 

Thank goodness for that time machine! Close this toggle and move onto the next part of the story.

Lucy’s right. Although a normal CT is usually reliable for ruling out raised ICP, this isn’t failsafe and there’s no rush to get CSF now. You’ve already started ceftriaxone and acyclovir anyway. And when she’s a bit more stable she can have an MRI to check the LP’s safe. The LP can wait for now.

Great teamwork! Close the toggle and continue the next part of the story.

You’re still not sure what’s causing Grace’s low GCS though. Maybe the bloods will help. So you log in to the computer to check Grace’s results.

Results showing a mild transaminitis

Huh, you think to yourself. Grace’s FBC and CRP are normal; it’s sounding less and less like infection.

Her urea is low and her liver enzymes are raised, with a slightly prolonged INR.

Her salicylate and alcohol levels are undetectable. This isn’t feeling so toxicological anymore.

You mull this over with Lucy. Maybe this is a viral picture. There was that cold sore…

Just then Maureen, the ED cleaner, pops her head into the office. “Might this be of any use?” she asks. She’s holding the RCPCH Decreased Conscious level guideline.

You quickly flick through. Bloods… imaging… you’ve done pretty much everything it suggests. But then you take a closer look at the list of bloods it suggests. And there, in black and white, it says ammonia.

Of course!” you say out loud. “That would explain the respiratory alkalosis!

You draw off an ammonia sample, get it on ice and ask Raymond, the dashing porter, to run it down to the lab. You give the lab a ring so they can get the machine primed.

While you’re waiting for the result to come back, Zak comes running over. He’s just been looking in Grace’s backpack for her mobile and found a high protein Diet book. Apparently she’s been trying to lose weight for TikTok. Could it be relevant?

The cogs begin to whir… Hang on a minute… A high protein diet in a vegetarian environmental activist?

The lab phones with Grace’s ammonia level.

It’s over 500! And normal is less than 40.

It all falls into place. Selective vegetarian… Recent protein load… Raised transaminases… High ammonia… This is all beginning to sound a bit metabolic.

But what should you do about that ammonia? As far as you can see, the DeCon guidance only tells you to take it, not what you do when it comes back at over 10 times the upper limit of normal.

Just a sec,” says Lucy scrolling through her mobile phone, “The British Inherited Metabolic Disease Group have got this covered. They’ve produced a whole range of easy access emergency guidelines, including this one, for the management of an undiagnosed hyperammonaemia.”

It says, turn off protein catabolism by giving a 10% dextrose bolus followed by a dextrose infusion to provide an alternative energy source. If her glucose climbs, add insulin but don’t reduce the dextrose – otherwise, she’ll just start breaking down more protein. And, finally, mop up that ammonia with scavengers like phenylbutyrate and sodium benzoate.

The words ‘ammonia scavengers’ remind you of another post you read on Don’t Forget The Bubbles, about the different types of metabolic conditions, how they present and the various treatment strategies. You make a mental note to read it again later to remind yourself of the differences between an amino acid and organic acid.

Meanwhile, you hastily prescribe…

  •       A 2ml/kg bolus of 10% dextrose
  •       a dextrose infusion
  •       And those ammonia scavengers, sodium benzoate and sodium phenylacetate

Grace is subsequently diagnosed as having a urea cycle disorder. You’re amazed to discover that although most diagnoses are made in neonates, diagnoses are sometimes made in adolescents and adults presenting encephalopathic after a big protein load or when catabolic, such as after trauma, childbirth, major surgery, major haemorrhage, critical illness, rapid weight loss or simply after switching to a high protein diet. This is particularly true for ornithine transcarbamylase (OTC) deficiency, which although is X-linked, can present in symptomatic female OTC carriers. Little diagnostic clues include autoselective vegetarianism (that protein makes them feel a bit ‘ugh’) and subtle or behavioural difficulties from chronic low-level hyperammonaemia.

You bookmark a fantastic review article to read later and flick back through your undergraduate biochemistry textbook to remind yourself about urea cycle defects… and hastily close it again when you remember how little you knew even then, at the prime of your undergrad years.

Wow, what a shift. You pack up your stethoscope and head home, reflecting on your day as you walk to the bus stop.

Grace has taught you the importance of…

Reaching for the RCPCH DeCon guideline when looking after a child with an unexplained low GCS.

Not ever forgetting to send an ammonia in an encephalopathic child, young person or even adult; these tricksy urea cycle disorders can present in adulthood. If the ammonia comes back high, BIMDG have a handy guideline telling you exactly what to do.

And, remembering that a normal CT does not ALWAYS rule out raised ICP. In a child with low GCS, put away that LP needle and neuroprotect instead.

But what happened to Grace? Let’s jump in the time travel machine and find out…

Your epic diagnosis of a late presenting metabolic disorder was the talk of the ED. The RCPCH DeCon poster was put up in the ED staff room and from that point onwards, everyone remembered to check an ammonia in a patient presenting with an unexplained low GCS. 

Lucy was nominated as employee of the month. This shift was a pivotal moment in her career as she decided PEM was her vocation.

The ammonia scavengers did the trick and Grace made a full recovery.

Grace focussed her efforts on reducing plastic waste in hospital and successfully petitioned for the introduction of plastic-free PPE, reducing plastic waste during the COVID-19 pandemic by an incredible 275%.

She hit 3 million TikTok followers (and you’re one of them).

This PEM adventure wouldn’t have been possible without some help from some amazing people. Thank you to Roshni Vara, Consultant in Paediatric Inherited Metabolic Disease at the Evelina London, Costas Kanaris, PICU and retrieval consultant at the Royal Manchester Children’s Hospital and Jon Lillie, PICU and retrieval consultant at the Evelina London Children’s Hospital.

Here are some of their wise words of advice…

As Costas says in The N of 1 matters, we’ve outlined our take on Grace’s case and how we’d manage her in our own resus bays. Medicine’s not always so clear cut and there are often different approaches to the same problem, but this is our consensus on minimising risk using, as Costas says, a rational, evidence-based and pharmacologically prudent approach (I love that phrase Costas!)

Should we intubate Grace?

Grace is self-ventilating but the fact that she is tolerating an oropharyngeal airway means some of her airway reflexes have gone. Scanning a child with a GCS of 8 or less, without securing the airway, puts them at risk. If they vomit, they aspirate. If they stop breathing and arrest in the scanner, the CT room is one of the least fun places to run an arrest, perhaps second only to an elevator. Are there any counter-arguments? Yes, and they’re soft.  One is “this patient is encephalopathic/obtunded and may have seizures; if the child starts fitting we won’t be able to tell as they’ll be paralysed”.  Costas says he usually stands his ground and says that if someone is worried about seizures then the child can be given a long-acting antiepileptic. Levetiracetam is his preference, although phenytoin would work just as well unless there’s suspicion of an overdose of an arrhythmogenic agent. The last thing you need is to tip this child into an arrhythmia.

When should a lumbar puncture be performed in a child with a decreased conscious level?

CT is a useful tool for ruling out raised intracranial pressure before proceeding to lumbar puncture. And we’d agree. But Grace has a low GCS and this changes the picture.

If we take a look at the full RCPCH DeCon guideline it dedicates a whole section to answering the question about LP in decreased conscious level. So, let’s start there.

The DeCon guideline advises a lumbar puncture if your differentials are viral encephalitis or tuberculous meningitis and advises that we consider lumbar puncture when our differentials are bacterial meningitis, sepsis, or the cause of the low GCS is not known. This is cloaked with the phrase “when no acute contraindications exist” and this is key. So what are those contraindications?

  • Signs of raised intracranial pressure: dilated pupil(s), abnormal pupil reaction to light, bradycardia, hypertension or abnormal breathing pattern.
  • A GCS equal to or less than 8, or a deteriorating GCS
  • Focal neurology
  • A seizure lasting more than 10 minutes with a GCS less than 13
  • Shock or clinical evidence of meningococcal disease
  • CT or MRI suggesting obstruction of the CSF pathways by blood, pus, tumour or coning.

What’s the evidence? Well, it’s mostly been derived by expert opinion, and there aren’t many people who’d dispute them.

But what about when you have a normal CT? The radiologists can look for midline shift and for signs of impending herniation by assessing the position of the cerebellar tonsils. So, surely that can rule out raised ICP, allowing an LP to be done?

The DeCon guideline quotes a study published in 2000 that showed that in 124 CT scans from 65 children with traumatic brain injury, CT had an excellent sensitivity of detecting raised ICP of 99.1%, with a specificity of 78.1%. But, a 2019 revision to the guideline says that no further evidence about the sensitivity or specificity of CT in detecting raised ICP in children has been found. None. Although the sensitivity in the one quoted study was very high, it was felt that one study, in children with traumatic brain injury, could not be extrapolated to all children with a decreased conscious level. And so the guideline states that a normal CT scan does not exclude raised ICP. If other contraindications are present, don’t use a normal CT to justify LP.

What does this mean in practice? Well, in a child with a GCS of 8 or less, like Grace, there’s no rush to do an LP. It’s unlikely to change your management acutely in the ED. Her infection can be treated empirically and once she’s more stable, and you have more information including, potentially, an MRI, she can then have an LP for PCR.

What neuroimaging should we do?

That’s a good question, answered beautifully by an article by Hayes et al, published in 2018. Although this article focuses on neuroimaging for headaches, it has a great section on when you might choose each type of scan.

We’d all agree that the ideal imaging to look for a brain tumour is an MRI. It gives excellent detail about the brain tissue as well as other intracranial soft tissues and the extra-axial CSF spaces.

But, if you want a quick answer, or your access to MR is difficult, a non-contrast CT can be performed easily from the ED. If there’s no possibility of a later MR, then contrast-enhanced CT might be better as it gives more detail, but it’s more radiation – this is one for discussion with the radiologist.

CT is very sensitive in detecting blood, and it can be done quickly, in an emergent setting from the ED. So, in children with thunderclap headache, when you want to exclude subarachnoid hemorrhage, a non-contrast CT will be your first choice scan. If blood is detected, then add in arterial imaging: CT or MR angiography (CTA or MRA). Contrast is injected and images taken in the arterial phase.

CTA or MRA are also useful in the investigation of suspected stroke. In practice, you need an answer fast, particularly if the child’s within the thrombolysis window and could be a candidate if there’s evidence of ischaemic stroke, so a CTA is a more practical scan. The CT component looks for blood or large areas of parenchymal infarct, while the angiography looks for filling defects in the arteries that could indicate a thrombus.

If you’re looking for intracranial extension of infection, such as from an orbital cellulitis, mastoiditis or a brain abscess, then a contrast-enhanced CT will highlight suppurative collections.

And if you suspect a venous sinus thrombosis, such as in children with coagulopathies, sickle cell disease, infective spread from meningitis / mastoiditis / sinusitis, or secondary to dehydration or renal failure? Then you need to look at the venous spaces. CT or MR venography (CTV or MRV), when contrast is injected and images obtained in the venous phase, will give you the answers you need.

And what ARE the causes of a respiratory alkalosis?

There are a few! Here are the main ones:

  • Central: brain tumours, meningoencephalitis; stroke
  • Respiratory: asthma, pneumonia, pneumothorax, PE
  • Sepsis
  • Pregnancy
  • Endocrine and hypermetabolic cause: DKA, thyrotoxicosis
  • Toxicology: salicylates 
  • Hyperammonemia: liver and metabolic disorders 
infographic of causes of respiratory alklosis

We would LOVE your feedback about these DFTB PEM adventures so if you can spare a minute, please complete our survey at www.tiny.cc/DFTBpemadventure or use your smartphone to let the QR code take you straight there. We timed ourselves completing it and it takes less than a minute. Thank you.

Select references

The management of children and young people with an acute decrease in conscious level. A nationally developed evidence-based guideline for practitioners. RCPCH. 2015 update, with 2019 revisions. Management of children and young people with an acute decrease in conscious level – Clinical guideline | RCPCH

Undiagnosed Hyperammonaemia. Diagnosis and Immediate Management. British Inherited Metabolic Disease Group. Last reviewed 2017. The major causes are as follows (bimdg.org.uk)

Hirsch, W., Beck, R., Behrmann, C. et al. Reliability of cranial CT versus intracerebral pressure measurement for the evaluation of generalised cerebral oedema in children. Pediatric Radiology 30, 439–443 (2000). https://doi.org/10.1007/s002470000255

Expert Panel on Pediatric Imaging:, Hayes LL, Palasis S, Bartel TB, Booth TN, Iyer RS, Jones JY, Kadom N, Milla SS, Myseros JS, Pakalnis A, Partap S, Robertson RL, Ryan ME, Saigal G, Soares BP, Tekes A, Karmazyn BK. ACR Appropriateness Criteria® Headache-Child. J Am Coll Radiol. 2018 May;15(5S):S78-S90. doi: 10.1016/j.jacr.2018.03.017. PMID: 29724429.

Mitani H, Mochizuki T, Otani N, Tanaka H, Ishimatsu S. Ornithine transcarbamylase deficiency that developed at the age of 19 years with acute brain edema. Acute Med Surg. 2016;3(4):419-423. doi:10.1002/ams2.214

Summar ML, Barr F, Dawling S, Smith W, Lee B, Singh RH, Rhead WJ, Sniderman King L, Christman BW. Unmasked adult-onset urea cycle disorders in the critical care setting. Crit Care Clin. 2005 Oct;21(4 Suppl):S1-8. doi: 10.1016/j.ccc.2005.05.002. PMID: 16227111.

Kanaris C, Ghosh A, Partington CG389(P) A case for early ammonia testing in all encephalopathic patients: female patients with x-linked ornithine transcarbamylase deficiency. Archives of Disease in Childhood 2015;100:A158-A159. http://dx.doi.org/10.1136/archdischild-2015-308599.343

Summar, Marshall. (2005). Presentation and management of urea cycle disorders outside the newborn period. Critical Care Clinics. 21. IX-IX. 10.1016/j.jccc.2005.08.004.

What should I wear to work?

Cite this article as:
Jilly Boden. What should I wear to work?, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29527

One of the things I enjoy a lot paediatrics training is the generally softer and more informal ‘child friendly’ approach we have. Lots of research has gone into making children’s wards and environments brighter, more fun and appealing. But what about us?

It seemed to me that, for children at least, as healthcare professionals we were strangers, without an obvious, identifiable role. That first impression we give before we even approach the child must be quite confusing. Dr Brown Bear, Doc Mc Stuffins and Dr Ranj all wear white coats, they are always friendly, smiley and make you better. We don’t. Pre-COVID, it was only really our emergency colleagues who wore scrubs

So, in the pre-COVID era, I created a study (yes a real actual research project) where we surveyed 50 children using the images below.

Interestingly, the outcome was not only what I suspected, but also, COVID convenient. The favourite overall (and the most ‘friendly’) outfit chosen by the children was blue scrubs. The outfit I called ‘office attire’, smart trousers/shirt but not formal suit and tie, came out as the least desirable outfit. You may appear more clever in a suit and tie, but not particularly trustworthy or friendly. Individual comments gave a window into their choices, scrubs apparently allowed us to run faster to help them, and allowed us to sleep better so that we would not be tired and ‘be better doctors’. 

As for those in ‘office attire’, unfortunately you are the least trusted, least clever and least friendly, but the most scary

As for the age-old white coat, it’s not scary and actually, those who wear them appear quite trustworthy. Perhaps a reflection of what children see in the modern media, they trust Dr Ranj & Doc Mc Stuffins.

 In summary, I’m sticking to scrubs, and look forward to the day when I can add a (short sleeved of course) white coat.

Ref: The study was published in the EMJ (ok, the supplement but it still counts right?) but annoyingly doesn’t have a DOI, please feel free to email me for a digital copy of it. 

Petechiae in Children – the PiC Study

Cite this article as:
Tessa Davis. Petechiae in Children – the PiC Study, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.30782

Today the Lancet has published the long-awaited results of the Petechiae in Children (PiC) study. Team DFTB got our hands on a pre-publication copy to read, summarise, and analyse for you. So let’s get to it.

This PERUKI study by Waterfield et al. is a prospective, multicentre cohort study:

Waterfield T, Maney J-A, Fairley D, Lyttle MD, McKenna JP, Roland D, Corr M, McFetridge L, Mitchell H, Woolfall K, Lynn F, Patenall B, Shields MD, Validating clinical practice guidelines for the management of children with non-blanching rashes in the UK (PiC): a prospective, multicentre cohort study, The Lancet, 2020

Why is this study needed?

We are all somewhat terrified of children with fever and a non-blanching rash. We don’t want to miss meningococcal sepsis. Current guidelines are based on data from before the introduction of the Meningococcal B (2015) and C (1999) vaccines and consider a prevalence of 10-20% of meningococcal infection in children with fever and non-blanching rash.

Who were the patients?

The paper looked at children under 18 years old presenting to 37 Paediatric Emergency Departments in the UK over a 16 month period. Children were included if they had a fever (>38oC) and new onset of a non-blanching rash or features suggestive of meningococcal infection. Children were excluded if they had a pre-existing haematological condition or if they already had a diagnosis of Henoch-Schonlein purpura.

1513 patients were screened. 179 were excluded due to not meeting the criteria, not consenting, or a language barrier. Five that were enrolled had incomplete data leaving 1329 children were enrolled and included – the median age was 24 months, and 59% were male. Most children were vaccinated with 73% having had at least one dose of the Meningococcal B vaccine, and 77% having had at least one dose of the Meningococcal C vaccine.

What was the intervention?

There was no intervention here. Included patients were recruited at the point of meeting the criteria, using ‘recruitment prior to consent‘ and then consent was obtained soon after (usually within 24 hours). Data were collected contemporaneously: patient symptoms, blood test results, and treatment. A positive case was identified by being positive on PCR, or with a positive growth from another body sample (e.g. blood culture, or CSF). Patients were also checked for re-attendance to the hospital within 7 days. Results were also confirmed with the Public Health Agency – as meningococcal disease is a notifiable condition, this was a good method of picking up any missed cases.

What were the outcomes measured?

The primary outcome was assessing the performance of eight clinical guidelines on identifying children with invasive meningococcal disease (NICE meningitis (CG102); NICE sepsis (NG51); London; Chester; Bristol; Nottingham; Newcastle-Birmingham-Liverpool; and Glasgow).

The secondary outcomes were: performance of the eight guidelines in identifying children with other bacterial infections; and also looking at a cost comparison of each of the eight guidelines.

What were the results?

Of all 1334 children, 86% had a blood test and 45% had antibiotics. For patients admitted to hospital, the median length of stay was one night. 11 patients were admitted to PICU (2%) and two patients died (<1%).

Eight of these 11 PICU patients had N. meningitidis as did both of the patients who died. Seven patients had invasive bacterial infection (five with pneumococcal infection, one with E. Coli, and one with Group A Strep).

19 (1%) of patients in the cohort had meningococcal disease. 17 of these had N. meningitidis B, one had N. meningitidis C, and one had N. meningitidis W. Overall there were 26 patients (2%) with invasive bacterial infection (19 with meningococcal disease and 7 with an invasive bacterial infection).

346 patients (26%) did not have standard testing, and of these 19 patients (5%) had one unplanned re-attendance within seven days. However, none of these required readmission, antibiotics, or bacterial infection.

And how did the guidelines do?

All eight guidelines identified all of the 19 cases of meningococcal disease and all 26 cases of invasive bacterial infection (so the sensitivity of all of them is 100%). Specificity varied though. The NICE sepsis guideline stratified every patient as having a bacterial infection and therefore had a specificity of zero, making it the lowest specificity out of all the guidelines (closely followed by NICE meningitis guidelines with a specificity of 1%). This strategy clearly has cost implications too which is why the two NICE guidelines were also the most expensive per patient (£660.41 for the NICE sepsis guidelines).

Coming out top of the guideline ranking was the Barts Health NHS Trust guideline with a sensitivity of 100%, a specificity of 36%, and a cost of £490.29. This makes it the most accurate and also the cheapest.

Here’s the Barts Health NHS Trust guideline:

What about when we don’t follow the guidelines?

In practice, the guidelines were adhered to in 46% of the patients in the cohort. Deviation from guidelines resulted in fewer antibiotics being given. However, it also resulted in two patients being discharged with early meningococcal disease (they were subsequently treated and did not need PICU admission). Clinician decision-making increased the specificity (i.e. clinicians treated fewer people with antibiotics who didn’t have an invasive bacterial infection), but unfortunately reduced the sensitivity to 89%. Clinician decision-making did have the lowest cost per patient.

You’ve heard the facts, but how good was the paper?

As Ken Milne says…let’s get nerdy (and consider the CASP checklist for cohort studies)

Yes.

Research without prior consent was used to avoid recruitment delaying any treatment plans. However consent was obtained as soon as possible after inclusion in the study (usually within 24 hours).

Yes. Objective measurements were used for a blood test and PCR results. Risk factors for meningococcal disease are subjective and were based on contemporaneous clinical assessment – but this is what we do in practice so is a good reflection.

Yes. Note, however, that two patients with meningococcal disease were not included – one was not enrolled and the other was deemed by local staff to be inappropriate for inclusion.

Yes.

Yes, and also results were also checked with the Public Health Agency which would have allowed pick up of any missed meningococcal positive results.

There is a 1% prevalence of meningococcal disease in a mainly immunised population of children with fever and a non-blanching rash. The Barts Health NHS Trust guideline was the most accurate out of all the guidelines and with the lowest cost per patient.

Yes.

Yes. However, they would not be transferrable to populations with lower rates of vaccine uptake or a higher disease prevalence. The data was not shared on whether those with meningococcal disease were unimmunised or not, and therefore it would be prudent to be more cautious if your patient is not vaccinated.

Previous data was from prior to the meningococcal vaccination so this is the first and largest study since then.

What did the authors conclude and what can we take away from this study?

Since the advent of a vaccination programme and increased vaccine uptake, the rates of meningococcal disease are lower. Although previous data suggested 10-20% of children with fever and a non-blanching rash had meningococcal disease, in fact this study shows that only 1% had meningococcal disease.

Using a cautious guideline like NICE results in a lower specificity and higher cost. Tailored guidelines can increase the specificity and reduce the cost per patient without compromising on 100% sensitivity. The Barts Health NHS Trust guideline was the top performing guideline.

And finally, a comment from the authors themselves:

From Tom Waterfield:

The Petechiae in Children study represents the best available evidence regarding the assessment and management of febrile children with non-blanching rashes in the UK and clearly demonstrates that a lighter touch, tailored approach, is favourable to a test/treat all approach as currently advised by NICE. Moving to a tailored approach will reduce the need for invasive procedures, improve antimicrobial stewardship and save money. 

In vaccinated populations where the prevalence of invasive meningococcal disease is low the presence of Petechiae alone should no longer be viewed as a red flag and should not be used to justify immediate treatment with broad spectrum antibiotics. The emphasis and teaching should shift away from worrying about all non-blanching rashes with greater emphasis on the importance of identifying purpuric rashes as they confer the greatest risk of invasive meningococcal disease. 

Finally the PiC study demonstrates the importance of well designed prospective research studies in identifying risk factors for sepsis. Traditional approaches utilising retrospective reporting of symptoms from convenience samples of children with sepsis results in an over estimation the risks. This in turn leads to the development of overly aggressive clinical practice guidelines that are poorly adhered to. 

Note from Tessa: I am an employee of Barts Health but was not involved in the PiC study or in writing the Barts Health NHS Trust guideline.

Gastroenteritis

Cite this article as:
Angharad Griffiths. Gastroenteritis, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.28790

Conor is a 10 kg, 13 month-old boy who’s presented to the ED with a 24-hour history of diarrhoea and vomiting.  He has had 5 episodes of non-bloody, non-bilious vomits. Since waking up this morning has two episodes of loose/watery non-bloody malodorous stools. They have not ‘flooded’ the nappy but were quite large.  He is taking sips of fluid (mixtures of water, milk, and juice being offered) and has only eaten half a digestive biscuit so far today.  He has had a fairly large wet nappy last night, but not since, though it’s now difficult to tell as his last nappy was dirty.  He is alert and looking around while being carried but is upset on leaving his mother’s arms.  He cries with tears, has a normal heart rate but his mother is worried about his dry lips.  She was told by a healthcare worker neighbour that he will “need a drip”. CRT, HR, and BP are normal.  His temperature is 37.8.  His nappy is dry and has been on for 3 hours now.  His capillary glucose measurement is 3.2.  You decide he’s probably mildly dehydrated.

Introduction

Gastroenteritis (GE) is the presence or diarrhoea or vomiting (or both) that may or may not be accompanied by fever, abdominal pain and anorexia.  Diarrhoea is the passage of excessively liquidy or frequent stools with liquid high water content.  Although often felt to be a common minor illness presentation, it is a major cause of childhood mortality and morbidity, causing millions of deaths worldwide in children in low and middle-income countries; of all child deaths from gastroenteritis 78% occur in Africa and South-East Asia. 

Gastroenteritis accounts for a huge proportion of GP and ED presentations. In Europe, acute gastroenteritis the third commonest cause of hospital admission, accounting for between 4-17% of admissions.  In Australia, gastroenteritis caused by rotavirus alone accounts for 115,000 GP visits, 22,000 ED visits and 10,000 hospital admissions a year, with an estimated cost of 30m Australian Dollars (£12m, €18m).  In the UK, 20% of GP consultations in the under 5’s are for GE.

It is imperative that the child with gastroenteritis is differentiated from more sinister causes of vomiting.  The presence of diarrhoea is reassuring but doesn’t exclude other intra-abdominal causes.  The same can be said for pain out of proportion with gastroenteritis, distension, peritoneal signs or localised tenderness.

Most cases are not associated with complications but when complications do occur, the commonest are electrolyte disturbance and metabolic acidosis.  Supplementary fluids through oral or intravenous routes are the most effective way to avoid these complications.

Gastroenteritis in low and middle-income countries can present differently, has different aetiologies, is often managed differently, and is a larger burden to healthcare systems in general than in high-income countries.  This post will focus on gastroenteritis in high-income countries. For more information about comparisons of guidelines across the world; Vecchio et al (2016) is an interesting read.

This is not meant to provide a clinical practice guideline; rather an overview of the illness.  Many (if not all!) paediatric emergency departments or general paediatric units have their own guidelines.

Pathophysiology

Worldwide, the commonest causes are viral pathogens, most commonly rotaviruses and noroviruses.  Viral infections cause damage to the small bowel enterocytes with resultant low-grade fevers and watery diarrhoea – classically without blood.  Rotavirus strains are seasonal and vary within different geographical areas.  The peak age for these infections is between 6 months and 2 years.  Children with poor nutrition are at higher risk of acquiring gastroenteritis and developing dehydration and complications.

Children with bacterial gastroenteritis are more likely to have bloody stool.
Escherichia coli and Shigella dysenteriae can be complicated by haemolytic uraemic syndrome (HUS).  This is an acute onset, microangiopathic haemolytic anaemia, thrombocytopaenia, acute renal impairment and multisystem involvement.  (Just to confuse things, HUS can present in the absence of bloody diarrhoea.)

Pathogens can be generalised into four groups:

  • Viral (70% of cases): Rotavirus, Norovirus, Adenovirus, Enterovirus
  • Bacterial (10-20% of cases): Campylobacter jejuni, Salmonella spp, Escherichia coli, Shigella spp, Yersinia enterocolitica.
  • Protozoa (unusual, accounting for <10%): Cryptosporidium, Giardia lamblia, Entamoeba histolytica
  • Helminths (very unusual): Strongyloides stercoralis

Transmission

Pathogens are spread mainly via the faeco-oral route, acquired by ingesting contaminated food or drink.  Water may be contaminated with bacteria, viruses, or protozoa. Undercooked (or inappropriately stored/cooked) meats and seafood are common culprits of bacterial pathogens.  Bacterial contaminants can produce toxins (e.g. Bacillus cereus in re-warmed rice or Staphylococcus aureus in ice-cream).

Pathogens causing gastroenteritis can also be transmitted without the patient being symptomatic.

Assessment

Gastroenteritis is a clinical diagnosis.  Enquire about sick/infectious contacts and potential sources (recent travel, food).  Enquire about the frequency of symptoms and intake of fluids.  Note the frequency of urination.  Note other things that may cause diarrhoea e.g. recent use of enteral antibiotics or chronic constipation with overflow diarrhoea the presenting feature. 

In the presence of signs such as high fever, long duration of symptoms, severe abdominal pain or bilious vomiting; review the diagnosis and do not immediately label as gastroenteritis.

Oral hydration fluids

Most children are not dehydrated and can tolerate oral fluids and so can be managed at home.  Take a look at Nikki Abela’s DFTB19 talk on top tips for a high yield dehydration assessment.

When children are only mildly to moderately dehydrated, as a general rule they can be treated with oral / enteral rehydration with low osmolality oral rehydration solution (ORS).  Worldwide, ORS is recognised as first line therapy and treating mild to moderate dehydration with enteral rehydration is supported by the WHO, European Society for Paediatric Gastroenterology and the American Academy of Paediatrics. The WHO recommends a low osmolality (hypo-osmolar) solution, usually containing sodium, potassium, chloride, carbohydrate (glucose) and a base.  Low osmolarity solutions reduce the need for IV fluids, reduce stool output and reduce vomiting frequency.

But… a major limitation to the use of ORS is its taste – and this is where apple juice comes in. For minimally dehydrated patients, half-strength apple juice is associated with fewer treatment failures compared to ORS and could suit as a more palatable alternative.  Take a look at a sweet summary (pun intended!) of the “apple juice trial”.

Breastfeeding should continue and a child can be supplemented with ORS if this is needed.  Children can go back to a normal diet after the illness has passed.

Enteral (oral / NG) versus IV hydration

Most studies show that enteral rehydration with ORS is just as effective as IV hydration in mild to moderate dehydration with a 2006 Cochrane analysis concluding that enteral rehydration is as effective if not better than IV rehydration with fewer adverse events and a shorter hospital stay.  It is also less invasive (even with NG placement) and anecdotally satisfaction is greater amongst parents.  It is very safe.

Enteral rehydration only fails in approximately 1 in 20-25 children.

Barriers to oral rehydration include unfamiliarity with the benefits, misconception that it takes longer than IV therapy, and that it has a high failure rate.

Contraindications to enteral rehydration include haemodynamic instability, abdominal distension, concern over ileus, absent bowel sounds, or impaired airway reflexes.

IV therapy is more invasive and involves placing and maintaining IV access.  There are also iatrogenic complications including electrolyte disturbance should inappropriate fluids / composition / volume / rate be used. 

But… in severely dehydrated children, put away the ORS and apple juice. They will need IV rehydration as first line.

Antiemetics

How can we support enteral fluids? Well, children who receive Ondansetron are less likely to vomit, have greater oral intake and are less likely to require IV hydration.  A Cochrane review demonstrates that Ondansetron also increases the proportion of children who stop vomiting when compared to placebo [RR1.4] and reduces the proportion of children needing IV therapy (and therefore admission rate) [RR 0.41].  Median length of stay is also shorter in the ED. 

Reported side effects are rare with very few reported side effects other than a few cases of increased frequency of diarrhoea.

Antiemetics alleviate vomiting by acting on the ChemoReceptor Trigger Zone and vomiting centre.  Ondansetron is a 5HT3 receptor antagonist.  This class of antiemetics have fewer adverse effects (than dopamine antagonists, anticholinergics, antihistamines and corticosteroids) and can be safely used in children.  The NICE guideline discusses its off-licence use (at time of publication it’s licence was for post-operative nausea and vomiting and chemotherapy induced vomiting).

Ondansetron prolongs the QT interval.  Recommendations are it should be avoided in those with long QT and should be used in caution where there may be electrolyte imbalance (severe dehydration) or on other QT-prolonging medication.

Ondansetron is relatively cheap  £1.71 for 10 4mg tablets and is available in oro-dispersible form (though these are much more expensive at £36 for 10x4mg tablets) and liquid (£36.82 for 40mg [50ml] bottle).

Probiotics

An ESPGHAN working group position paper on the use of probiotics in acute paediatric gastroenteritis concludes that:

  • Effects seen in clinical trial are probiotic strain specific (this makes ‘trial-life’ difficult to replicate in ‘real-life’).
  • A lack of evidence now doesn’t mean that there won’t be evidence sometime in the future. 
  • Safety profile of certain strains cannot be extrapolated to other strains.
  • Studies that report benefits in certain doses in certain settings have insufficient evidence to support a health benefit at lower doses and different setting.

…the jury’s still out.

Other therapies

Antibiotics and anti-diarrhoeal agents aren’t routinely recommended in the management of paediatric gastroenteritis.

For gastroenteritis in high income countries, the WHO does not recommend adding zinc to a treatment regimen (it is for gastroenteritis in low and middle income countries). 

Investigations

Routine lab testing in mild and moderate gastroenteritis is of little value in these patients and should be avoided unless clinically indicated.

This goes for stool samples too.  Stool cultures are not routinely indicated in immunocompetent children with non-bloody diarrhoea.

Confirmation of viral gastroenteritis after the child has been discharged from the ED, and likely on the road to recovery at home, adds very little to (A) the clinical diagnosis of viral gastroenteritis in the ED, (B) the management plan and (C) the clinical outcome. 

Should the investigation influence management, then stool sampling may be of benefit.  This could be applicable where an outbreak may be suspected in school or creche, where there may be a public health benefit.

Stool samples should be sent in cases of bloody diarrhoea, immunodeficiency and recent foreign travel.

How about tests for dehydration? Sadly there is no one test that correlates clinically with dehydration. Urine specific gravity in infants is unreliable because the kidney reaches adult concentrating abilities after the age of 1.  Also, the child often doesn’t begin urinating until rehydration has begun.

And glucose? Well, almost 10% of GE patients aged 1 month to 5 years in high income countries present with hypoglycaemia.  Risk factors for hypoglycaemia on presentation include a longer duration of vomiting and increased frequency of vomiting.  It would be reasonable to consider point of care glucose testing at triage for young children as identifying hypoglycaemia on clinical ground alone is difficult in this age group. 

Prevention

The key to reducing the burden (and generally for an all-round happier life!) is in the prevention of acute gastroenteritis.  Rotavirus vaccination is now commonplace thought the antibodies, the UK & Ireland and other countries around the world.  It is very effective.

In the home and in the ED…Handwashing, handwashing, handwashing!

Vaccination leads to a profound reduction in presentations and admissions and a fall in overall seasonal workload, often within the first year after the introduction of universal vaccination against rotavirus.  Even though only those under 1 year old are generally vaccinated, it has been shown to contribute to a significant herd effect with fewer cases than expected in older children. In Scotland, where initial vaccine uptake was 93- 94% during the first 2 years, annual rotavirus confirmed gastroenteritis cases fell by 84.7%, bed days reduced by 91% (from 325 to just 29), without any documented cases of intussusception.  Reductions were seen across all age groups despite only infants receiving the vaccine.  Similar results can be seen in other areas of the UK and Ireland.

The not to miss bits

  • Do not assume isolated vomiting in a child is gastroenteritis.  Consider other causes -these very widely from inborn errors of metabolism to diabetes mellitus, surgical obstruction to urinary tract infections. If you’d like to hear more, check out Dani’s talk on vomiting in children in DFTB Essentials.
  • Beware chronic diarrhoea in an infant – do they have malabsorption or is this a presentation of IBD or an immunodeficiency?
  • Beware the non-thriving child with diarrhoea.
  • And beware chronic diarrhoea.

But what happened to Conor?

Conor was given a cup of Dioralyte ORS and his favourite beaker filled with Dioralyte.  His mum was encouraged to give him syringes of 5 mls of Dioralyte frequently or for him to take sips from his beaker and was asked to document on a piece of paper how many he received.  He vomited after 30 minutes of this therapy.

You give him a dose of Ondansetron and place an NG tube and give him 100mls (10ml/kg) over 1 hour after deciding he does not need rapid rehydration but slightly more than normal maintenance.  He then receives maintenance volumes of Dioralyte via his NG, which he tolerates well and then starts to take his own sips from his beaker.

He does not vomit in the ED again, has one episode of loose stools, passes urine, and is tolerating fluids orally.  He’s smiling at you! You feel he can be discharged and council his mum regarding regular fluid intake, choice of fluids, of any red flags, and encouraged to return in the event of any concern.

Conor’s Dad calls to say that Conor’s 3 year old sister at home is now vomiting too!  But it’s OK – He’s not too worried about her and Conor’s Mum has advised his Dad to start giving her regular sips of Dioralyte at home…

References

Colletti JE, Brown KM, Sharieff GQ, Barata IA, Ishimine P. The Management of Children with Gastroenteritis and Dehydration in the Emergency Department. J Emerg Med [Internet]. 2010;38(5):686–98. Available from: https://dx.doi.org/10.1016/j.jemermed.2008.06.015

Elliott EJ. Acute gastroenteritis in children. Br Med J. 2007;334(7583):35–40.

Vecchio A Lo, Dias A, Berkley JA, Boey C, Cohen MB, Cruchet S, et al. Comparison of Recommendations in Clinical Practice Guidelines for Acute Gastroenteritis in Children. Gastroenterology. 2016;63(2):226–35.

Freedman SB, Willan AR, Boutis K, Schuh S. Effect of dilute apple juice and preferred fluids vs electrolyte maintenance solution on treatment failure among children with mild gastroenteritis: A randomized clinical trial. JAMA – J Am Med Assoc. 2016;315(18):1966–74.

BK F, A H, JC C. Enteral vs Intravenous regydration therapy for children with gastroenteritis: A meta-analysis of randomized controlled trials. Arch Paediatr Adolesc. 2004;158(1):483–90.

Hartling L, Bellemare S, Wiebe N, Kf R, Tp K, Wr C, et al. Oral versus intravenous rehydration for treating dehydration due to gastroenteritis in children (Review). 2006;

Fedorowicz Z, Jagannath V, Carter B. Antiemetics for reducing vomiting related to acute gastroenteritis in children and adolescents. [Internet]. Cochrane database of systematic reviews. 2011. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005506.pub5/full

NICE. Management of vomiting omiting in children and y young oung people with gastroenteritis : ondansetron. NICE GUIDELINES. 2014. p. 1–20.

Szajewska H, Guarino A, Hojsak I, Indrio F, Kolacek S, Shamir R, et al. Use of Probiotics for Management of Acute Gastroenteritis : A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. 2014;58(4):531–9.

Forrest R, Jones L, Willocks L, Hardie A, Templeton K. Impact of the introduction of rotavirus vaccination on paediatric hospital admissions , Lothian , Scotland : a retrospective observational study. 2017;323–7.

MARLOW RD, MUIR P, VIPOND I, TROTTER CL FA. Assessing the impacts from the first year of rotavirus vaccination in the UK. Arch Dis Child. 2015;100(Supl 3):A30.

Take a break?

Cite this article as:
Andrew Tagg. Take a break?, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29431

We spend a large proportion of our lives at work so it is important that we pay attention to our own wellbeing. A casual stroll through Twitter may reveal any number of wellbeing initiatives – from early morning yoga classes, through communal choirs, to meditation mornings. Whilst, subjectively, many of these appear to work, there is clearly a need for a better measure of wellbeing. Enter the NFR.

What is the NFR?

The Need For Recovery scale measures that subjective feeling of the need to take a break and recuperate from the emotional and physical demands of a day at work.

Originally derived from a sample of 68775 shift workers in the Netherlands, it is comprised of eleven dichotomous Yes/No questions.

In the emergency department, there are a number of extrinsic factors that might impact on our Need For Recovery. These include departmental crowding, lack of resources, and ambulances queuing out of the door. The assumption is that the daily accumulation of such tiring shifts, without a restorative break, can impact on our long-term health and increased occupational stress.

In order to look at how we are doing now, it might be worth taking a snapshot of the adult and paediatric emergency department workforce. PERUKI and TERN combined their might to do just this.

Cottey L, Roberts T, Graham B Trainee Emergency Research Network (TERN) and Paediatric Emergency Research in the UK and Ireland (PERUKI), et al. Need for recovery amongst emergency physicians in the UK and Ireland: a cross-sectional surveyBMJ Open 2020;10:e041485. doi: 10.1136/bmjopen-2020-041485

Population

This study was coordinated through the Trainee Emergency Research Networks (TERN) of UK and of Ireland and Paediatric Emergency Research in UK and Ireland (PERUKI).

A total of 4247 emergency physicians* from 112 emergency departments completed the survey.

For the purposes of this study an emergency physician was defined as any doctor working within the ED, be they seasoned veterans or post-graduate year one doctors completing their six-month term in emergency medicine.

Exposure

Participants were invited to take part in an online version of the Need For Recovery instrument. Although developed for industry it has been piloted in Emergency Department staff. Graham et al. (2020) trialed the survey in a single ED and achieved an 80.3% response rate (168/209). These subjects had to complete the 11 point NFR survey as well as an additional 32 questions. This larger survey upped the ante and added 44 items to the NFR. The quality of the web-based survey was maximized using the CHERRIES checklist.

Snapshot data was collected over a six-week period from 3rd June 2019, long before anybody had even heard of SARS-CoV-2.

Outcomes

Before we look at the Need For Recovery it is interesting to look at the demographic data.

3445 (83.5%) survey respondents worked full time. 609 (14.7%) worked less than or equal to 80% full time equivalents.

2886 (70.3%) worked more than one in four weekends with a shocking 1479 (36%) working every other weekend!

36.2% worked for, at most, four consecutive days, with the majority working between five and seven days in a row. 13.5% (554) had been rostered on for eight days straight.

Emergency physicians score higher than paediatricians, miners, paramedics, everyday folk, nurses, merchant sailors and truck drivers

The median NFR score (remember you want it to be as low as possible) was 70.0 (with 95% confidence intervals ranging between 62.0 and 78.0). It appeared to be higher in the more junior cohort – those that had been in the department for less than a year. This group scored an average of 72.7 with an upper limit of 90.9. Those who had spent more time in the job seemed better at recovery with a median NFR of 63.6. Those lucky individuals that had made a career of emergency medicine and had spent over ten years in post had the lowest score of all, 54.5.

As one might expect, higher scores were associated with a full-time work commitment, a burdensome weekend roster, and a higher number of consecutive days worked.

Lower scores were found in consultants and those that worked less than full time. The ability to access study leave and annual leave was also associated with lower scores. Luckily for those of us who have pursued a career in paediatric emergency medicine, this appeared to be associated with a lower NFR score too.

The authors conclude that there are three modifiable risk factors related to a higher NFR – access to annual leave, to study leave, and the proportion of out of hours work. Non-modifiable factors included things like male gender, seniority, generally good physical health, and working in a Paeds ED.

Risk of bias

So far we have reported the facts, as presented but let’s get a little nerdy, as Ken Milne would say, and look at the paper using Burns and Kho (2015) assessment guide for survey reports.

Was a clear research question posed?

Yes – the researchers wanted to look at Need For Recovery scores in a cohort of doctors working in emergency departments throughout the United Kingdom and Ireland.

Yes but… – the target population was defined as any registered doctor who had a fixed contract position (i.e. not a locum) in an emergency department in the UK and Ireland.

There are 183 Type 1 Emergency Departments in England alone. These are consultant-led, 24 hours a day, 7 days a week, 365 days a year services. The authors asserted that they wanted to have over 50% of their respondents from Type 1 centres but this data is not clear in the data presented. Are the majority of respondents from centres that do not have good consultant support?

According to 2018 data, 26% of advertised UK EM consultant places are unfilled. I would be interested to know if individual departmental data could be pulled out and benchmarked against the national average.

Yes – the technique was clearly outlined in the methods.

Yes – the questionnaire developed was very similar to that used by Graham et al. The only key difference being around some of the ancillary questions, rather than those analysed in this paper

Yes – it was distributed in an appropriate way.

No – though all principal investigators should be applauded for the large number of surveys completed, it is not clear what the denominator is. How many emergency physicians, as defined by the study group) were working during the six week period? Were those doctors who did not even attempt to complete the survey just too exhausted to do so?

Each site PI did provide an best-guess estimate of the number of potential respondents (accounting for sick leave, sabbaticals, annual leave etc.). This number was then used as the departmental denominator, with each site aiming for a 70% response rate. The actual response rate is not mentioned in the paper.

Sort of – there were actually 5107 unique visits to the survey site but only 4247 eligible for analysis. The NFR scores were then calculated as long as a minimum of 8 of the 11 questions were answered. The authors do not mention how they handled the missing data. If only 8/11 answers were provided, how would the addition of 3 further data points affect the results?

The demographic data was clearly reported, barring a few items, as described above, and the rest of the results were presented neatly.

Although I agree with the majority of the authors conclusions I am not so sure I would agree with the assertion that NFR score is unrelated to hours worked. It would seem from the data provided in table 2. those working less than full-time had a lower score.

Where to from here?

The ability to bounce back after a hard day at work is a marker of our general wellbeing. Whilst not everyone can swap over to working in PEM, these data from Cottey et al. would suggest that there are modifiable factors that would improve one’s ability to recover. Interestingly, none of these are within the junior doctors’ locus of control – access to study or annual leave, and better rostering. They are fully in the hands of others. This lack of autonomy can also lead to a lack of motivation.

The term, Need for Recovery, suggests that the onus is on the individual as if they were an elite athlete resting between races. It is not. It is the system that needs to change.

The authors note, in their limitations, that this is just a data snapshot, taken at one moment in time. There is little, in the medical sphere, to benchmark this data against. A similar survey could be carried out, in a different setting, in different geography or at a different time. Are these ratings typical of all areas of the hospital in the NHS or is it just the NHS? Do different craft groups score as highly? Are Need for Recovery scores as high in Australia and New Zealand (Editors note: I’ll work on that one) or are they a product of just working in the ED, regardless of the temperature outside? Are these scores a product of the time? The survey was carried out in the Northern hemisphere summer of 2019. What would those scores be like now, in a COVID ravaged world?

One more thing

There is one non-modifiable risk factor that we have not discussed – gender. Male and female respondents were equal in number but men had a much lower NFR than women – 65.6% (CI 60.8 – 66.5) vs 72.7% (70.5 – 75). But, women are much more likely to be the primary caregiver, you might argue. And you would be right, but even if this is taken into account, women seem to have a higher need for recovery. This seems to hold true in other studies that have looked at gender differences and fatigue.

References:

Burns KE, Kho ME. How to assess a survey report: a guide for readers and peer reviewers. Cmaj. 2015 Apr 7;187(6):E198-205.

Eysenbach, G., 2004. Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Journal of medical Internet research6(3), p.e34.

Graham B, Cottey L, Smith JE, et al Measuring ‘Need for Recovery’ as an indicator of staff well-being in the emergency department: a survey study. Emerg Med J  Published Online First: 2020. doi: 10.1136/emermed-2019-208797

Van Veldhoven, M.J.P.M. and Broersen, S., 2003. Measurement quality and validity of the “need for recovery scale”. Occupational and environmental medicine60(suppl 1), pp.i3-i9.

Winwood, P.C., Winefield, A.H. and Lushington, K., 2006. Work‐related fatigue and recovery: the contribution of age, domestic responsibilities and shiftwork. Journal of Advanced Nursing56(4), pp.438-449.

Wood, M., 2005. Bootstrapped confidence intervals as an approach to statistical inference. Organizational Research Methods8(4), pp.454-470.

PEM Adventures Chapter 1

Cite this article as:
Team PEM Adventures. PEM Adventures Chapter 1, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.29589

Stories are a powerful vehicle for education. Combine a story with some active participation and you have the recipe for some great learning. And so, it’s with great delight, that we bring you Chapter 1 of PEM Adventures. First presented at EuSEM 2018 and then again with some spectacular twists by Dan Lumsden, Paediatric Neurologist extraordinaire, Dani has a particular soft spot for Tomas, a little boy who dreams of being a footballer. Join us on a journey (with an inbuilt time travel machine) in managing Tomas, a little boy with a dream…

Meet Tomas, an 8-year-old boy who dreams of playing professional football. He’s been completely well until an ill-fated shopping trip for some new football boots. At 2 o’clock hours, while trying to persuade his mother that he definitely did need the new Premier League football to add to the collection, he developed sudden onset right-sided facial drooping. His mum bundled him into the car and drove him directly to your ED. You look at your watch: it’s now 3.30 pm.

Your assessment is as follows: Tomas is alert and he seems orientated. He has right sided facial weakness and weakness of both his right arm and leg. He has no obvious sensory changes but is struggling to communicate with you as he has global aphasia.

Suspecting the worse, you have a critical decision to make. But what are you going to do?

You bleep neurology.

And wait…

They don’t answer so you bleep again…

But they still don’t answer…

You bleep a third time…

But they still don’t answer. So you give up and call radiology instead.

You call radiology. And they ask… What imaging do you want?

The radiologist says, “Sure, imaging sounds like a good idea. Let’s do a combination of both a CT brain with CTA to look for blood and clots.

The CT scanner is available at 16:00.

But,” she adds, “if you’d like MR imaging, we could do that at 18:00.

Do you…

Tomas’ CT and CTA shows evidence of an arterial ischaemic stroke with thrombus occluding the middle cerebral artery. There is no intracranial haemorrhage.

It is now 16:15, 2 ¼ hours after the onset of Tomas’ symptoms.

You’re doing great. Close the toggles and move on to the next part of Tomas’ case.

Tomas has an MRI and MRA.

It shows an arterial ischaemic stroke with thrombus occluding the middle cerebral artery.

It is now 18:45, almost 5 hours after symptom onset – something tells you this is a bit too late.

Luckily for you, the inbuilt time machine whizzes you back to make that last decision again.

This time when you’re told you can have an MR and MRA at 18:00 or CT and CTA now you say… “I’ll have a CT and CTA now please.”

The radiologist says “Sure, imaging like a good idea. Let’s do a combination of both an MRI plus MRA to check the brain and look for clots.”

You phone MR. They say they can do the MR at 18:00. The CT scanner, however, is free now.

Do you…

Tomas has an MRI and MRA. It shows an arterial ischaemic stroke with thrombus occluding the middle cerebral artery. It is now 18:45, almost 5 hours after symptom onset – something tells you this is a bit too late.

Let’s travel back in time…

This time when you’re told you can have an MR and MRA at 18:00 or CT and CTA now you say… “I’ll have a CT and CTA now please.”

Tomas has a CT and CTA. It shows evidence of an arterial ischaemic stroke with thrombus occluding the middle cerebral artery. There is no intracranial haemorrhage.

It is now 16:15, 2 ¼ hours after the onset of Tomas’ symptoms.

You’re doing great. Close the toggles and move on to the next part of Tomas’ case.

With a little luck, Tomas has now had neuroimaging and you know he’s had an arterial ischaemic stroke with thrombus occluding the middle cerebral artery without intracranial haemorrhage.

So, what now? You haven’t managed to get hold of a neurologist for love nor money. So do you…

Tomas has supportive care.

Despite physio, OT and lots of assistance at the best neuro-rehabilitation centre, Tomas has a persistent hemiparesis.

You spend your life wishing you’d treated his stroke differently.

So let’s try that choice again.

You prescribe 5mg/kg aspirin.

Tomas has repeat imaging with an MRI and MRA 24 hours later.  His clot has not increased in size but the original clot remains in the middle cerebral artery.

Tomas has a persistent hemiparesis.

He becomes a demon-swimmer and wins Gold in the 2028 Paralympics

However, you spend your life wishing you’d treated his stroke differently.

Why don’t you try that choice again.

You prescribe heparin.

24 hours later Tomas deteriorates, dropping his GCS to 6

Repeat neuroimaging shows a large haemorrhage in the infarcted territory with significant pressure effect.

Let’s go back in time and try that choice again.

You decide to thrombolyse. Tomas will need to go to PICU after thrombolysis but there isn’t a PICU at your hospital.

Do you…

You opt for thrombolysis at the regional centre but will you…

You work fast to mobilise your anaesthetist, ED nurse and emergency kit as quickly as possible.

Tomas arrives at the regional centre at 19:15, 5 ¼ hours after the onset of his symptoms.

It is too late to thrombolyse.

Let’s hop in the time travel machine and go back in time to decide whether to transfer for thrombolysis or thrombolyse in your ED (Hint: you may want to thrombolyse in your own ED as the clock is ticking…)

The retrieval team are mobilised. They collect Tomas from your ED and deliver him safely to the regional centre at 19:15, 5 ¼ hours after the onset of Tomas’ symptoms.

But it’s now too late to thrombolyse.

Let’s hop in the time travel machine and go back in time to decide whether to transfer for thrombolysis or thrombolyse in your ED (Hint: you may want to thrombolyse in your own ED as the clock is ticking…)

Time is critical,” you think to yourself, and tell the team you’re going to thrombolyse in resus.

Tomas is thrombolysed with tissue plasminogen activator (tPA for short) at 18:00, 4 hours after onset of symptoms. His symptoms start to improve.

After intensive neuro-rehab he has no residual neurological deficit.

He grows up to become a professional football player for Bayern Munich, scoring a hat-trick to win the 2028 UEFA champion’s league.

Congratulations! You successfully treated a stroke in childhood. Now close the toggles and read on…

Although you opt for angiographic thrombectomy, the interventional neuroradiologist is on study leave and no-one is able to cover.

You suspect they are actually scared of children.

Either way Tomas can’t have the clot removed. You’re going to have to choose again.

You phone the neurosurgeons and ask them to do a hemicraniectomy.

They ask you to go through all his neurology and review his imaging.

They say “Sorry, but his PedNIHSS isn’t high enough for us to take to theatre.”

You think, “PedNIHSS?” and make a mental note to look it up later.

Let’s try that choice again.

After your shift you do a quick google search to look at the evidence around using tPA in children and you stumble across this paper:

Rivkin, M.J., deVeber, G., Ichord, R.N., Kirton, A., Chan, A.K., Hovinga, C.A., Gill, J.C., Szabo, A., Hill, M.D., Scholz, K. and Amlie-Lefond, C., 2015. Thrombolysis in pediatric stroke study. Stroke. 2015: 46(3); 880-885.

Rivkin’s team were part of a huge multi-state stroke research team in North America. They designed the incredibly well thought out and well put together TIPS (Thrombolysis in Paediatric Stroke) study, to look at (A) safety of and (B) dose of tissue plasminogen activator (tPA) in children presenting with and arterial ischaemic stroke (AIS). They set out to recruit children aged 2 – 17 with acute AIS and PedNIHSS score between 4 – 24 to receive tPA if initiated within 4.5 hours of symptom onset. Centres were given protocols to manage complications such as intracranial haemorrhage, systemic bleeding, hypotension or angioedema.

Sounds good, right?

Well, in principle, yes.  The study opened in April 2012 but closed only 20 months later in December 2013 because only 1 child had been enrolled and they hadn’t actually been treated due to complications following extubation prior to tPA administration. 

93 children had been screened with 43 having confirmed AIS and the other 50 having a stroke mimic such as migraine, seizure or tumour etc. 

Of the 43 children with AIS about half had medical contraindications to tPA (including moyamoya disease & anticoagulation treatment); 10 were outside the treatment window (including 1 who missed the treatment window by 15 minutes due to delay at scanner); some had a PedNIHSS that was too low ; 1 had a PedNIHSS that was too high; and a couple didn’t have arterial occlusion on imaging.

But it wasn’t a total disaster. Preparing for TIPS also led to the development of Paediatric Stroke Networks in North America.  And designing the TIPS study led to consensus guidelines on the management of stroke in children.

These consensus guidelines derived from the TIPS study design have been extrapolated to the 2017 RCPCH Stroke in Childhood guideline, based on expert opinion and the best available evidence. As well as the full guideline, there’s a simple, easy to follow pathway poster that can be grabbed for quick reference whenever a child presents with potential stroke symptoms.

The poster gives a list of potential stroke presentations, from an unexplained persistent drop in GCS, through acute focal neurology (even if resolved), focal seizures, headaches, ataxia, dizziness, speech disturbance and a prompt to consider stroke in children with sickle cell disease.

It includes a simple, easy to follow, Paediatric National Institute of Health Stroke Scale (that PedNIHSS we’ve talked about) a bit like a Glasgow Coma Scale but specific for paediatric stroke.  The PedNIHSS makes up a really important part of the neurological assessment, a way of scoring the severity of the stroke. It is vitally important that the PedNIHSS is calculated because if the score is very low, with a very minimal deficit at the outset, the risk of thrombolysis outweighs the potential benefit. And if the PedNIHSS score is very high, it’s likely that the child has a very large area of brain damage, with a high risk of haemorrhage into that infarcted territory, again making the risk : benefit ratio too risky. The child’s PedNIHSS score guides your subsequent management.

The pathway lists investigations (which must include coagulation profile and group and save, because of that risk of bleeding), monitoring and neuroimaging. Timing of imaging is key. The guideline states that children should be scanned within 1 hour of presentation to the ED. Pragmatically, this is usually CT with CTA (the angiography component to look at the arteries), because organising an MRI with MRA takes longer. But, if you’re in an institution with great access to MR and you can get your imaging within an hour of presentation then it’s definitely worth a discussion with the radiologist.

If a child has a confirmed AIS, what do we do? The guideline offers two either / or treatments: EITHER aspirin 5mg/kg within an hour, as long as there is no parenchymal haemorrhage OR thrombolysis. The guideline suggests that thrombolysis may be considered in children aged 2-8 and could be considered in children over 8 (some careful wording there because extrapolating evidence from adult studies to an 8 year old is easier than to a 2 year old) provided the PedNIHSS is between 4 and 24 and tPA can be administered within 4.5 hours of symptom onset. There must be either MRA evidence of thrombus or normal or only minimally ischaemic changes on CTA (no huge areas of ischaemia, because the risk of bleeding into it is just too high), with or without evidence of thrombus. And as the biggest risk of giving tPA is haemorrhage, there must be no contraindications, such as abnormal clotting, an underlying bleeding disorder, malignancy, hypertension or moyamoya disease.

It’s really important to note that the treatment for AIS is not the same as for a child with a haemorrhagic stroke (these children need urgent discussion with a neurosurgeon for consideration of evacuation) or a child with an ischaemic stroke secondary to sickle cell disease (pick up the phone, call a haematologist and organise an exchange transfusion). Although not included on the poster, the guideline summary and full guideline give indications for surgical and endovascular interventions in stroke, as well as those nuggets for managing stroke in a child with sickle cell disease or haemorrhagic stroke.

And what about thrombectomy? This is a very active area of interest. In the world of adult AIS there has been a big move towards primary clot removal by thrombectomy rather than clot busting with thrombolysis. In the world of paediatric stroke, although there are some published case series and case reports, we don’t have a clear evidence base or national guidance. Yet.

So, what is the take-home from Tomas’ case? Although stroke is rare in children, it does occur. Thrombolysis is a potential management option given the right conditions, as long as it’s given within the 4.5-hour window. So, next time you see a child with stroke-like symptoms, send bloods early, get early neuroimaging with angio, and pull out the RCPCH Stroke in Childhood poster.

With special thanks to Dr Dan Lumsden, Paediatric Neurologist at the Evelina London Children’s Hospital, who inspired the creation of Tomas’ case and presented him so fabulously at the Royal Society of Medicine. Thank you, Dan.

Soft tissue knee injuries

Cite this article as:
Lisa Dann. Soft tissue knee injuries, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.25908

Sam, a 12-year-old boy, presents to your department after a soccer blitz. He was tackled, heard a pop, and now can’t weight bear on his right knee.

As popularity and intensity of children’s sports increases there are increased demands placed on children and adolescents. This has resulted in an increased presentation of children like Sam. They can present with knee pain that is traumatic or atraumatic, acute or chronic. Paediatric patients are particularly vulnerable to overuse injuries involving the physes and apophyses due to their inherent weakness (see post, hyperlink article on fractures around knee).

Along with these there has also been an increase in soft tissue injuries. These are seen more commonly in older children/adolescents as their bones become stronger and are less likely to fracture with age.

History/examination

Important points to note on the history include:

  • If there was clear onset of pain
  • Traumatic or atraumatic
  • Duration of pain
  • Previous injury/surgery
  • Site of the pain (try be as specific as possible)
  • Severity of pain
  • Nocturnal pain
  • Systemic symptoms
  • Associated swelling (intermittent or progressive)
  • Contralateral injuries (may result in abnormal gait placing additional pressure on knee)
  • Hip or back pain

Recalling the anatomy of the knee makes evaluating the site of pain easier.  The following make up the knee and all can be can be injured/inflamed and cause pain.

  1. Bones around knee – femur ends at lateral and medial condyles which articulates with tibial plateau and anteriorly the patella unsheathed in the patellar tendon.
  2. Ligaments – anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial and lateral collateral ligaments.
  3. Meniscus – medial and lateral menisci act as shock absorbers and interdigitate into the ACL and PCL for more stability.
  4. Bursae – supra-patellar bursa, infra-patellar bursa, pre-patellar bursa, and pes anserine bursa (medial aspect of knee).
  5. Tendons – quadriceps tendon (inserts into patella), patellar tendon (inserts into tibial tuberosity)
  6. Other – iliotibial band (fibrous support of fascia lata originating at the external lip of iliac crest and inserting into the lateral condyle of the tibia).

Examination in the acute setting is often difficult and may be limited. This is due to swelling, pain and anxiety. Try your best to be as detailed as possible but ensure you note any red flags on examination. These are:

  • Inability to do straight leg raise (extensor mechanism rupture)
  • Ligamentous laxity
  • Catching, locking or giving away (meniscal injury)
  • Inability to fully straighten the knee

After a thorough history and examination you discover he was tackled and the other player’s foot landed on the lateral aspect of his knee. On examination you find a swelling on medial aspect of the knee and laxity of the medial collateral ligament when valgus stress is placed on the right knee.  You clinically diagnose a medial collateral ligament injury. He is placed in a brace and referred to orthopaedic clinic.

Injured ligaments are considered “sprains” and are graded on a severity scale.

  • Grade 1 sprains: The ligament is mildly damaged. It has been slightly stretched, but is still able to help keep the knee joint stable.
  • Grade 2 sprains: The ligament has been stretched to the point where it becomes loose. This is often referred to as a partial tear of the ligament.
  • Grade 3 sprains: This type of sprain is most commonly referred to as a complete tear of the ligament. The ligament has been split into two pieces, and the knee joint is unstable.

Ligament specific examinations:

  • Anterior and posterior drawer tests – asses anterior and posterior cruciate ligament integrity.
  • Lachman test – assesses ACL integrity. Most sensitive test for ACL rupture. Non-dominant hand cups and support knee. Ensure quads and hip flexors relaxed for it to work. Dominant hand grasps proximal tibia, knee flexed at 20-30 degrees. Pull sharply. Tibia shouldn’t move much and should have distinct end point.
  • Posterior sag test – patient supine, hip flexed at 45 degrees and knee at 90 degree. Look at knee from lateral position. If PCL damaged you’ll see tibia sagging posteriorly.
  • Varus and valgus stresses – assess integrity of medial and lateral collateral ligaments. Compare both sides for laxity.

Management:

  • Unstable joints require a thorough examination of neurovascular status, orthopaedic consultation and very close follow up.
  • ACL tears often have poor healing abilities and may require surgical repair if injury is significant.
  • PCL is much better at healing itself than ACL and low grade tears are managed non-operatively with grade 3 or higher needing reconstruction.
  • Collateral ligament injuries have good healing potential so rest, ice, bracing and slow advancement of range of motion is the management primarily undertaken.

A short while later one of Sam’s team mates, Patrick, presents to ED. He was also playing in the soccer blitz. He got sudden knee pain when turning and his knee is now locked. Following assessment you suspect a meniscal injury.

Meniscal injuries

Meniscal injuries can be traumatic or atraumatic. Suspect if the knee is locked, there was a twisting mechanism, a tearing sensation, or an effusion.

Specific examinations include:

  • McMurray test – patient supine, hip and knee flexed at 90 degrees. Non-dominant hand placed over joint line. Dominant hand grasps patient’s heel and internally and externally rotates tibia exerting valgus and varus forces while extending the leg. This helps to grind on either the medial or lateral menisci. Pain, popping or clicking is a positive test.
  • Appley compression test – the patient lies prone with the knee bent at 90 degrees. The examiner rotates the leg externally and internally several times under simultaneous vertical pressure. A painful pop can point to a meniscal injury.

Treatment includes physiotherapy to compensate for the tear but surgical management may ultimately be required. Follow up with orthopaedics is required.

Patrick’s sister was also brought for review. She is 15 years old and has been having intermittent knee pain for the last few months but it gets much worse after she plays sports. She also says it really hurt her after the cinema yesterday. You suspect patellofemoral pain syndrome.

Patellofemoral pain syndrome (PFPS)

The pain is frequently described as anterior but is often poorly localised. It may feel like it’s “under” or “around” the patella. Pain is classically exacerbated by prolonged periods of sitting, use of stairs and squatting (theatre sign). Pain may be present for several weeks, exacerbated by activity and relieved after periods of rest. Frequently there is a deterioration in sports performance or inability to participate prompts patients to seek medical review.

Clinical examination should look for gait abnormalities, increased lumbar lordosis, and any asymmetry in hips or lower extremity. It is not uncommon to have reduced flexibility in the hamstrings or quadriceps.

Clarkes sign – positive in PFPS. Patient supine, knee extended. Grab the superior pole to the patella with thumb and index finger and have the patient activate the quadriceps while you inhibit the patellar movement. This causes grinding of the articular surface between patella and femur. Pain is indicative of PFPS.

Investigations are not routinely required. However, knee radiographs may assist in ruling out other conditions such as osteochondritis dissecans of the knee/patella and stress fractures of the patella. Radiographic imaging in PFPS is not diagnostic. It is necessary to combine any findings with your clinical examination.

Management of this is conservative as it is a self-resolving condition. It typically resolves over weeks to months but has been known to take up to two years for complete resolution of symptoms. Management involves reduction in activity (complete cessation usually not required), ice, rest, anti-inflammatory for pain control (short term use), avoidance of aggravating exercises (e.g. squatting) and some find relief with taping/knee-braces. Exercises that strengthen and increase flexibility of the quadriceps, hamstrings, soleus and gastrocnemius muscles are also recommended.

Further specific examinations and possible causes of non-specific knee pain

  • Ask the patient to tighten knee and palpate the quadriceps tendon at superior pole (tenderness indicates possible tendonitis), straight leg raise (assessing quadriceps strength and integrity).
  • Palpate body of patella for tenderness (Sinding-Larsen syndrome) and then patellar tendon and tibial tuberosity (Osgood-Schlatter syndrome).
  • Palpate the medial side of patella (possible inflamed medial plica band) and also palpate the proximal tibial surface (medial anserine bursa- pain, swelling, tenderness may indicate bursitis).
  • Feel under the patella (tenderness on articular surface could indicate patella-femoral syndrome).
  • Lateral – assess for patellar instability (need quadriceps relaxed and knee flexed at 30 degrees). Apprehension indicates patellar laxity and potentially previous dislocation.
  • Joint line – bend the knee and palpate either side slowly and carefully. Try to localize as much as possible. Tenderness may indicate a meniscal tear.
  • Hamstring muscles: With the knee flexed palpate the hamstring muscles. Laterally is the biceps femoris and medially semi-tendinosus and semi-membranosus. Chronic tightness may be the cause of knee pain.
  • Patellar ballottement- effusion

Bottom line

A thorough history and examination can greatly assist in reaching the diagnosis. A correct diagnosis helps to properly counsel patients and appropriately manage their expectations. Without proper treatment, knee injuries can lead to chronic knee problems, early onset arthritis, injury to surrounding tissues, and prolonged healing times. Missed injuries can also cause recurrent cartilage damage, instability in the knee, and unnecessary time away from physical activity. It is our duty to diagnose these injuries in a timely manner and provide appropriate advice, support and follow up.

Below is a useful table outlining the causes of intrinsic knee pain, separated by site of pain on examination (table 1).

References

Finlayson C. Knee injuries in the young athlete. Pediatr Ann. 2014;

Brooke Pengel K. Common overuse injuries in the young athlete. Pediatr Ann. 2014;

Beck NA, Patel NM, Ganley TJ. The pediatric knee: Current concepts in sports medicine. J Pediatr Orthop Part B. 2014. doi:10.1097/BPB.0b013e3283655c94.

Calmbach WL, Hutchens M. Evaluation of patients presenting with knee pain. Part II Am Physician. 2003.

PEM Playbook Knee Pain podcast https://pemplaybook.org/podcast/knee-pain/

Tillaux fractures

Cite this article as:
Tadgh Moriarty. Tillaux fractures, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.26111

Jenny is a 14-year-old girl who was at soccer training when she had an awkward injury to her left ankle. She was running for the ball when her foot caught in a clump of grass and she externally rotated her leg while her foot remained planted. While the pain was instantaneous, there was very little swelling. Her father has brought her in remarking that ‘it’s probably just a sprain’. But as you call her down to the cubicle to examine her, you think there might be more to it.

Incidence

Tillaux fractures are a type of ‘transitional’ ankle fracture which occur almost exclusively in adolescents. These occur during the unique closure pattern of the distal tibial physis. This closes over an eighteen-month period; first in the middle, then medially and finally laterally. During the closure, this area is vulnerable to these distinctive transitional fractures; the triplane fracture and the Tillaux fracture.

These fractures account for roughly 3% of paediatric ankle fractures. They are seen more commonly in females and tend to occur at slightly different ages depending on gender. It tends to occur later than a triplane fracture; between 12-14 years in girls and 15-18 years in boys.

Mechanism

This Salter-Harris 3 fracture occurs at the anterolateral distal tibial epiphysis. It tends to cause avulsion of the tibial fragment by the tibiofibular ligament; this strong ligament extends from the anterior aspect of the lateral distal tibial epiphysis to the anterior aspect of the fibula. The lack of a fracture through the coronal plane distinguishes this injury from that of a triplane fracture.

This injury pattern occurs usually through a combination of supination and external rotation of the foot in relation to the leg. It usually occurs through low-velocity trauma for example in skateboard accidents or sports with a sliding injury.

Presentation

These injuries are almost exclusively seen in adolescents. Similar to most ankle injuries there will be a history of trauma, symptoms of pain, swelling, and an inability (or painful) weight-bearing.

The clinical exam often reveals localised tenderness to the anterior joint line. This contrasts with a sprain where the tenderness is usually below the joint line. Marked displacement is prevented by the fibula.

Imaging

Do not be misled by lack of swelling – have a low threshold to image injuries which present with an inability to weight bear (at least four steps). When requesting an ankle x-ray AP and lateral views will be included as standard – if you have a high index of suspicion for a Tillaux fracture ask for an oblique or ‘mortise’ view – this can improve your detection by avoiding the obstructed view through the fibula and potentially making the subtle fracture more apparent.

This injury can sometimes have an associated ipsilateral tibial shaft fracture or a proximal fibular injury. During your clinical exam if you illicit tenderness proximal to the ankle, then include a full-length tibia/fibula x-ray with your request.

Does this injury require a CT? Perhaps! See the controversy section below for a more thorough explanation. CT is generally only required by the orthopaedic team to assist with surgical planning.

Image courtesy of Orthobullets.com

Image showing CT scan of same fracture with >2mm displacement courtesy of Orthobullets.com

This injury however often requires a CT scan to assist the orthopaedic team in deciding between conservative and operative management.

A study by Horn et al showed CT as being more sensitive than plain film at detecting fractures with greater than 2mm displacement (the cut-off point adopted for operative fixation).

Treatment

These fractures are important as they involve the weight-bearing surface and can lead to significant morbidity if missed. The treatment of these injuries is not uniform – different methods and cut-offs are described in different case reports and case series. Having that said the current marker for operative versus conservative treatment is the degree of displacement of the fracture fragment.

Those with < 2mm displacement can generally be treated conservatively. This usually involves an above-knee cast for up to 4 weeks (to control the rotational component) followed by either a walker boot or below-knee cast for a further 2-4 weeks. This conservative approach is well documented in having a satisfactory outcome.

Those with displacement >2mm generally require intervention to ensure articular congruity of the joint surface is restored. Intervention can occur in different forms; some may be suitable for a closed reduction under procedural sedation (or general anaesthetic). Different reduction techniques exist however longitudinal traction while the knee is flexed followed by internally rotating a maximally dorsiflexed ankle seems to achieve greater anatomic reduction. A review by Lurie et al concluded those left with a residual gap of more than 2.5mm led to worse functional outcomes. Therefore post-reduction radiological confirmation should show minimal displacement (the figure of <2mm tends to be favoured in the literature) otherwise operative intervention is required. Many orthopaedic surgeons favour CT as the post-reduction imaging modality of choice and then follow this reduction with serial radiographs to confirm maintenance of the reduction over time.

Operative intervention can involve K-wire insertion, use of lag screws or a novel technique involving percutaneously inserted wires with arthroscopic or radiological guidance. This new technique is seen as less invasive and as-effective but is technically complex and demanding. If this injury presents with a neurovascular compromise or critical skin then emergent surgery is indicated. This is, thankfully, rare.

What to tell the patient

Recovery: Both operative and conservative measures tend to require up to 8 weeks of immobilisation followed by a rehab phase. This phase will vary depending on the age of the patient. Most patients have a good outcome with 86% having complete recovery and no sequelae. Very few will have pain or limitation of ankle movement. Late presentation and a non-anatomical reduction will increase the risk of this.

Complications

These are less common than other ankle fractures; delayed or malunion, osteonecrosis of the distal tibial epiphysis, premature growth arrest and compartment syndrome are all very rare occurrences. Early-onset arthritis can occur, those with late presentations or missed fractures are more at risk.

Operative intervention carries the additional (albeit small) risk of physeal damage from direct pressure by blunt instruments and inadvertent damage to the superficial peroneal nerve.

Controversies

Radiological evaluation remains controversial. Plain x-ray usually identifies the transitional fracture, and the degree of displacement. However, CT (ideally with 3D reconstruction) is more accurate in estimating the degree of displacement and fracture separation.

Case courtesy of Dr Yasser Asiri, Radiopaedia.org. From the case rID: 64778

CT can help in identifying the number and position of fragments. The issue of whether CT or MRI alters treatment or prognosis when compared with plain X-ray has not been fully investigated. Limited research has been carried out on whether CT, with its greater accuracy, actually affects treatment or patient outcome. Liporace et al in 2012 found that interobserver and intra-observer agreements about primary treatment plans did not differ significantly between radiography alone and radiography plus CT. This showed that the addition of CT did not actually change the impression about the degree of displacement in each case. This raises the question as to whether CT really alters outcomes despite having perceived greater benefits.

Jenny is found to have significant tenderness about her distal tibia on exam and an x-ray confirms a Tillaux fracture which is minimally displaced. She is placed in an above-knee backslab and referred to the orthopaedic fracture clinic. She is left disappointed that she will miss this season’s matches, but thankfully you didn’t misdiagnose this as a sprain!

References

Orthobullets.com/paediatrics/4028/tillaux-fractures

Wheelers textbook of orthopaedics (updated 2015) Clifford J Wheeless Tintinnali 7th Ed

Tiefenboeck TM, Binder H, Joestil J et al. Displaced juvenile Tillaux fractures: surgical treatment and outcome. Wien Klin Wochenschr. 2017; 129 (5-6):169-175

Rosenbaum AJ, DiPreta JA, Uhl RL. Review of distal tibial epiphysis transitional fractures. Orthopaedics. 2012;35(12):1046-1049

Horn BD, Cristina K, Krug M, Pizzutillo PD, MacEwen GD. Radiologic evaluation of juvenile Tillaux fractures of the distal tibia. J Pediatr Orthopaedics. 2001; 21(2): 162-4

Cooperman DR, Spiegel PG, Laros GS. Tibial fractures involving the ankle in children. The so-called triplane epiphyseal fracture. J Bone Joint Surg Am. 1978 Dec. 60 (8):1040-6

Panagopoulos A, van Niekerk L. Arthroscopic assisted reduction and fixation of a juvenile Tillaux fracture. Knee Surg Sports Traumatol Arthrosc 2007;15:415-417

Manderson EL, Ollivierre CO. Closed anatomic reduction of a juvenile tillaux fracture by dorsiflexion of the ankle. A case report. Clin Orthop Relat Res. 1992 Mar. (276):262-6.

Crawford AH Triplane and Tillaux fractres: is a 2mm residual gap acceptable. J Pediatr Orthop. 2012 Jun;32 Suppl1:S69-73

Schlesinger I, Wedge JH. Percutaneous reduction and fixation of displaced juvenile Tillaux fractures: a new surgical technique. J Pediatr Orthopaedics. 1993;13:389-391

Stefanich RJ, Lozman J. The juvenile fracture of Tillaux. Clin Orthopaedics Relat Res. 1986;210:219-227

Kaya A, Altay T, Ozturk H, Karapinar L. Open reduction and internal fixation in displaced juvenile Tillaux fractures. Injury 2007;38:201-205

Choudhry IK, Wall EJ, Eismann EA. Crawford AH, Wilson I. Functional outcome analysis of triplane and tillaux fractyres after closed reduction and percutaneous fixation. J Pediatr Orthop. 2014;34:139-43

Jennings MM, Layaway P, Schubert JM. Arthroscopic assisted fixation of juvenile intra-articular epiphyseal ankle fractures. J Foot Ankle Surg 2007;46: 376-386

Rockwood and Wilkin’s fractures in children. 6th Edition.2006

Kim JR, Song KH, Song KJ, Lee HS. Treatment outcomes of triplane and Tillaux fractures of the ankle in adolescence. Clin Orthop Surg. 2010 Mar. 2 (1):34-8

Haapamaki VV, Kiuru MJ, Koskinen SK. Ankle and foot injuries: analysis of MDCT findings. AJR Am J Roentgenol. 2004 Sep. 183 (3):615-22

Charlton M, Costello R, Mooney JF et al. Ankle joint biomechanics following transepiphyseal screw fixation of the distal tibia. J Pediatr Orthopaedics. 2005;25: 635-640

Liporace FA, Yoon RS, Kubiak EN, Parisi DM, Koval KJ, Feldman DS, et al. Does adding computed tomography change the diagnosis and treatment of Tillaux and triplane pediatric ankle fractures?. Orthopedics. 2012 Feb 17. 35 (2):e208-12

Lurie B, Van Rysselberghe N, Pennock AT, Upsani VV. Functional outcomes of Tillaux and triplane fractures with 2-5millimetres of intra articluations gap. J Bone Joint Surg Am. 2020;102:679-686

Rapariz AJ, Avocets G, Gonzalez-Herman P, Texas et al. Distal tibial triplane fractures: long term follow up. J Pediatr Orthopaedics. 1996; 16: 113-118.