Lateral condylar fractures of the humerus

Cite this article as:
Lisa Dunlop. Lateral condylar fractures of the humerus, Don't Forget the Bubbles, 2020. Available at:

Six-year-old William was playing hopscotch in the playground but fell, landing on his left outstretched hand. Afterwards he complained of left elbow pain and was taken to the local Emergency Department. He was told that he had a lateral condylar fracture of the humerus…



This is a relatively common fracture in the paediatric population and occurs mainly in children below the age of 7 years old, with a mean age of 6. It accounts for approximately 10-20% of paediatric elbow fractures and is the second most common intra-articular fracture.



The most common aetiology for this fracture is a fall onto an outstretched hand. The patient will complain of pain to the lateral aspect of the elbow. The level of pain may be low in minimally displaced fractures.



Have a look at our post on elbow examination for tips on how to do a full assessment of a child’s elbow.

Inspection of the joint will reveal an elbow with swelling to the lateral aspect. There is usually minimal deformity. Bruising may indicate a brachioradialis tear and therefore likely instability. Tenderness is usually limited to the lateral aspect and crepitus may be palpated on movement. Wrist flexion and extension may reproduce the pain.

It is important to carefully examine the joint below and above the injured area. Don’t forget to examine the rest of the child for other injuries.

Remember to be suspicious of non-accidental injury in cases where there are inconsistencies in the history and injury type.



AP and lateral x-rays of the elbow are required. Oblique views can be valuable if no fracture is seen on lateral or AP views but clinical suspicion remains. This is where your knowledge of the ossification centres comes into play (for detail on this see CRITOE). The ossification centres appear on x-rays in the order: Capitellum, Radial head, Internal epicondyle, Trochlea, Olecranon and the External epicondyle, also known as the lateral condyle. The lateral epicondyle appears at the age of 8-12 years old and fuses at age 12-14 years old.

The paediatric elbow is largely cartilaginous. Lateral condylar fractures often only affect the cartilaginous part of the humerus. As cartilage is not radiopaque, the true extent of the fracture is often not fully understood when looking at the x-ray.

The presence of anterior and posterior fat pads may often be the only indication that a fracture is present.

The most commonly associated fracture is the ipsilateral elbow dislocation (usually posterolaterally) and ipsilateral humeral fractures (most commonly the olecranon). Ensure you obtain radiographs for other suspected fractures.

 Lateral condyle fractures can be classified depending on their x-ray appearances.



There are several different classification methods. The most common classifications as below.

Milch Classification
Type 1 The fracture line is lateral to the trochlear groove… not into the humero-ulnar joint
Type 2 The fracture line is medial to the trochlear groove and is, therefore, a fracture-dislocation and unstable.


Milch Classification


Jakob Classification
Stage 1 <2mm displacement, which indicates intact cartilaginous hinge
Stage 2 2-4mm of displacement
Stage 3 >4mm displacement with rotation of the fragment


Jakob Classification


Immediate treatment in the ED

Provide immediate adequate analgesia to the child prior to any examination or investigation.

If the fracture is open, conservatively manage the wound, consider tetanus status and antibiotics.

Keep the child nil by mouth as they may need urgent surgery.


Treatment following imaging

Treatment depends on the degree of displacement of the fracture.

Due to the high complication rate of these fractures, all lateral condylar fractures should be referred for to the on-call orthopaedic team while in the Emergency Department.


Jakob classification Treatment option Follow up
Stage 1 (<2mm of displacement) Conservative management with immobilisation with above elbow cast to 90 degrees. Weekly imaging in fracture clinic with the cast in place for 4-6 weeks.
Stage 2 and 3 (> 2mm with or without rotation) These all must go to theatre and have closed reduction with percutaneous pinning or open reduction with screw fixation. 3-6 weeks in above-elbow cast and orthopaedic follow up.


Areas of controversy

Serial radiographs are often recommended in the management of conservative management minimally or undisplaced lateral condylar fractures. A systematic review by Tan et al 2018 found that serial X-rays have no clinical significance. However, if the 1 week up x-ray is not satisfactory, this should be followed up appropriately under the patient’s treating orthopaedic team.


Potential complications

This type of fracture is associated with a high rate of complications, which usually develop later, during the healing process.

The reduction must be accurate. If there is malunion, the fragment does not adequately unite or the epiphyseal plate is damaged then complications may occur:

  • Stiffness is the most common complication, usually fully resolving by 48 weeks.
  • Delayed union occurs if the fracture has not healed after 6 weeks. This usually occurs if the fracture visible at 2 weeks.
  • Non-union is more likely when delayed union occurs.
  • Cubitus valgus deformity occurs with lateral physeal growth arrest.
  • Delayed “tardy ulnar palsy” may develop as the child grows and the ulnar nerve is stretched across the elbow with valgus deformity.
  • Avascular necrosis may develop 1-3 years after the fracture.

Image from


Do not miss bits

Lateral condylar fractures of the humerus can present with minimal pain or deformity and can be missed (16.6% misdiagnosed as presented by Tan et al 20181). Due to the high rate of complication, it is important that we do not miss these fractures.


William was found to have an isolated Jakob stage 3 type lateral condylar fracture and was taken to theatre that evening. Open reduction was required, and internal screw fixation secured the fragment. His cast was removed 4 weeks after and his joint mobility continues to improve.




Bowden G, McNally MA, Thomas RYW, Gibson A. 2013. Oxford Handbook of Orthopaedics and Trauma, Oxford Medical Publications. Page 564-5

Dandy DJ, Edwards DJ, 2003. Essential Orthopaedics and Trauma, Fourth Edition, Churchill Livingstone, page 197.

Raby N, Berman L, Morley S, de Lacey G. 2015. Accident and Emergency Radiology: A survival Guide Third Edition, Sauders Elsevier page 106-110.

Shaath k, Souder C, Skaggs D. 2019. Orthobullets, Lateral Condyle Fracture – Pediatric Accessed 06/04/2019–pediatric

Tan SHS, Dartnell J, Lim AKS, Hui JH. Paediatric lateral condyle fractures: a systematic review. Arch Orthop Trauma Surg. 2018 Jun;138(6):809-817. doi: 10.1007/s00402-018-2920-2. Epub 2018 Mar 24. Review. PubMed PMID: 29574555.


Proximal Tibial Fractures

Cite this article as:
Deirdre Glynn. Proximal Tibial Fractures, Don't Forget the Bubbles, 2019. Available at:

Proximal tibial fractures are infrequent in children relative to tibial shaft and distal tibial fractures. The patterns of injury correspond to the age of the child and the type of force involved.


Tibial physeal fractures

A 13 year old boy is brought into ED by ambulance following a motor vehicle accident. He was a front street restrained passenger in a car that was involved in a head on collision with another car. His knee was hyperextended on impact and he presents with an acutely painful and swollen knee.

Proximal tibial physeal fractures occur in young adolescents (12-14 years), usually from high energy mechanisms such as sports injuries and road traffic accidents. Patients present unable to weight bear with a swollen, tender knee and a marked decrease in range of movement. It is really important to assess the limb’s neurovascular status as rarely posterior displacement of the fracture may injure the popliteal artery. These patients are also at risk of developing compartment syndrome so make sure you frequently reassess of the limb and the child’s pain in the acute setting.

Confirm diagnosis with AP and lateral radiographs of the lower leg including the knee and ankle. Proximal tibial physeal fractures are classified according to the Salter Harris system.

The initial treatment of closed proximal tibial fractures that are neurovascularly intact is analgesia and immobilisation in an above knee back slab or splint. If the patient has vascular compromise then they need an urgent ortho review and reduction.

Further treatment depends on the severity of the fracture and the degree of displacement. Generally speaking non-displaced Salter Harris I or II fractures can be treated non-operatively with 4-6 weeks of non-weight bearing and leg immobilisation in slight flexion. Displaced fractures and all Salter-Harris III, IV or V fractures need prompt ortho review and likely operative repair.

Serious acute complications are rare. These include arterial injury, nerve injury and compartment syndrome. The most serious long-term complication is growth arrest and resultant leg length discrepancy, which happens in up to 25% of cases. Therefore all physeal fractures need ortho follow up.


Tibial spine fractures

A 12 year old girl presents with knee pain, decreased range of movement and swelling following a fall from her bicycle. As she fell she recalls hyperextending and twisting her knee.


Case courtesy of Dr Adam Tunis, From the case rID: 42621 Tibial spine avulsion (and associated Segond fracture)


Fractures of the tibial spine or eminence are avulsion fractures at the insertion of the anterior cruciate ligament (ACL). They are uncommon and typically occur in adolescents between the 8-14 years of age. They are usually associated with a fall from a bicycle or pivoting on a planted foot while playing sport. It is equivalent to mid-substance rupture of the ACL in adults. With stress, the incompletely ossified tibial eminence in the child avulses before the ligament ruptures.

These patients usually presents with painful haemarthrosis and are unable to fully extend the knee. Stability may be difficult to assess due to pain and muscle spasm but the anterior drawer and Lachman’s test may be positive. AP and lateral x-rays of the knee should be obtained. Complicated fractures will likely need further evaluation with CT or MRI to fully characterise the injury.

Fractures are identified as type I, II, and III by the Meyers and McKeever classification. Type I fractures are non or minimally displaced. Type II fractures are displaced anteriorly with an intact posterior hinge. Type III fractures are completely displaced from the proximal tibia. This classification system had been modified by Zaricznyj to include type IV/Comminuted fractures. (Zaricznyj 1977).



Immediate treatment in ED should be with appropriate analgesia and splinting the knee in extension. Displaced fractures may need operative repair. All patients will need to be followed by in orthopaedic clinic.

Complications are not uncommon and include pain, malunion, non-union, severe laxity and arthrofibrosis.


Metaphyseal corner fractures

A 2 year old boy is brought to the ED by his concerned aunt. She has noticed over the last few days that he is reluctant to weight bear on his left leg and appears to have a painful knee.


Case courtesy of Dr Hani Salam, From the case rID: 13614


Metaphyseal corner fractures, or bucket handle fractures occur in children less than two years old. In a previously well infant with normal bones this fracture is almost pathognomonic for non-accidental injury (NAI). These fractures are Salter Harris II fractures of the long bones and are most frequently seen in the proximal or distal tibia, distal femur or proximal humerus. They result from shaking or twisting injuries.  If there is no sign of neurovascular compromise management is conservative and should focus on pain control and a period of immobilisation in plaster. As the diagnosis is highly suggestive of non-accidental injury the child should be referred through regular safeguarding pathway.


Tibial tubercle avulsion fractures

A 15 year old boy presents with acute onset severe knee pain following landing heavily while playing basket ball. The joint is swollen, he is unable to actively extend the knee and he is exquisitely tender over the tibial tuberosity.

Tibial tubercle fractures are uncommon and usually occur in boys between the ages of 13 and 16 years. The mechanism is usually forced flexion of the knee during active quadriceps contraction e.g. landing a jump while playing basketball.

Acute tibial tubercle apophyseal fractures are different from tibial tubercle apophysitis (Osgood Schlatter disease – see below) which has gradual onset.

Patients presents with acute onset pain with swelling and tenderness over the tibial tubercle with limited knee extension, proximal displacement of the patella and shortening and spasm of the quadriceps muscle.

Diagnosis is confirmed on lateral knee x-ray, which demonstrates a fracture through the base of the tubercle. The fracture fragment is proximally displaced and remains attached to the patellar tendon.



There are several classification systems described. Watson-Jones classified the fracture in to three types .

  • Type 1: The fracture is within the most distal portion of the tibial tuberosity with resultant avulsion of the most distal part.
  • Type 2: The fracture line extends through the cartilage bridge to the proximal end of the tibia but doesn’t involve the articular surface.
  • Type 3: The fracture line extends to the articular surface of the proximal tibia.

Ogden modified this classification system to include subtypes A and B to indicate if the fracture is comminuted or not.

Initial management of a tibial avulsion fracture without neurovascular compromise, is pain control, immobilisation of the fracture, and reduction of swelling. Type IA injuries are treated conservatively with knee immobilisation in full extension.  Patients should remain non-weight-bearing. Type IB, type II, and type III injuries are generally treated with open reduction and internal fixation (ORIF).  All patients need a variable period of immobilisation (average four weeks). Progressive rehab of the quads will be needed afterwards. Return to play can be expected approximately two to three months after type I and II injuries and at three to six months after type III injuries.

Acute compartment syndrome, the most serious complication associated with tibial tubercle fracture, is rare. Due to its potential catastrophic consequences it is important to repeatedly assess the neurovascular status of the limb in the acute phase with onward urgent orthopaedic referral if needed. More common complications include bursitis, ongoing tenderness or prominence of the tibial tuberosity, mal or non-union and re-fracture.


Osgood-Schlatter disease

A 12 year old keen footballer, presents with her father complaining of several months of anterior knee pain that is worse during and after exercise. Recently she has noticed a prominent bump to the front of her knee.

Osgood-Schlatter disease, also known as osteochondritis or apophysitis of the tibial tubercle, is a common cause of anterior knee pain in adolescents. It is an overuse injury caused by repetitive strain and chronic avulsion of the secondary ossification centre (apophysis) of the tibial tubercle at the insertion point of the patellar tendon. It is more common in boys and affects up to 10% of athletic adolescents. It occurs in children aged 9 -14 years who have undergone a rapid growth spurt. It’s typically unilateral but can be bilateral in 20-30% of cases.

It occurs more frequently in children who play sports that place stress on the tibial tubercle through repetitive quadriceps contraction e.g. football, basketball, sprinters, gymnastics and dance. The patient generally presents with a history of non-traumatic gradual onset anterior knee pain associated with tenderness and swelling over the tibial tubercle. Symptoms are exacerbated by exercise and kneeling and relieved by rest.

Exam findings include tenderness and soft tissue or boney prominence of the tibial tubercle. Pain is reproducible with resisted knee extension.  Straight leg raise is usually painless and range of motion of the knee is not affected.

Osgood-Schlatter disease is a clinical diagnosis. Imaging is not necessary to confirm the diagnosis in cases where the presentation is characteristic. If knee x-ray is done it may be normal or show anterior soft tissue swelling or fragmentation of the tibial tubercle, Occasionally a persistent bony ossicle may be visible after fusion of the tibial epiphysis.   Imaging may be needed as part of the work up in patients with atypical symptoms and signs.

Consider other diagnoses, investigation, and onward referral in the presence of trauma, knee erythema, systemic symptoms, bone or joint pain elsewhere, night pain, rest pain or painful examination of the hip or knee joint. 

Osgood-Schlatter disease is usually a benign and self limiting condition. Symptoms generally resolve once the growth plate is ossified. Conservative measures are the mainstay of treatment and include:

  • Continued sports participation is recommended providing pain is tolerable and resolves within 24 hours. Otherwise a graded reduction in activity may be sufficient to control the pain.
  • Simple analgesia and application of ice for pain control.
  • Physiotherapy that includes stretching and strengthening of the quadriceps and hamstrings.
  • Corticosteroids, crutches and knee immobilisers are not recommended.
  • Specialist referral is indicated for severe cases or where symptoms remain intolerable into adulthood.


Complications of Osgood-Schlatter disease include persistent prominence  of the tibial tubercle, persistent pain and rarely genu recurvatum (hyperextension of the knee).



Mann DC et al. Distribution of physeal and nonphyseal fractures in 2,650 long bone fractures in children aged 0-16 years. Journal of Paediatric Orthopaedics (1990); 10:713.

Chapman J, Cohen J. Proximal tibial fractures in children.

Little RM, Milewski MD. Physeal fractures about the knee. Current Reviews in Musculoskeletal Medicine. (2016); 9(4): 478–486

Coyle C et al. Tibial eminence fractures in the paediatric population: A systematic review. Journal of Children’s Orthopaedics. (2014); 8(2): 149–159

Van Rijn RR, Sieswerda – Hoogendoorn T. Imaging child abuse: the bare bones. European Journal of Paediatrics. (2012); 171(2): 215–224

Frey S et al. Tibial Tuberosity Fractures in Adolescents. Journal of Children’s Orthopaedics. (2008) 2:469–474

Watson-Jones R.  Fractures and joint injuries. Baltimore: Williams & Wilkins; 1955

Ogden JA, Tross RB, Murphy MJ. Fractures of the tibial tuberosity in adolescents. Journal of Bone and Joint Surgery Am. 1980;62(2):205–215

Pesl T; Havranek P. Acute tibial tubercle avulsion fractures in children: selective use of the closed reduction and internal fixation method. Journal of Children’s Orthopaedics. (2008) 2(5):353-6

Pretell –Mazzini J et al. Outcomes and Complications of Tibial Tubercle Fractures in Pediatric Patients: A Systematic Review of the Literature.  Journal of Paediatric Orthopaedics. (2016) 36(5): 440-46

De Lucena,G., Dos Santos Gomes,C. and Guerra,R.(2011) Prevalence and associated factors of Osgood-Schlatter syndrome in a population-based sample of Brazilian adolescents.American Journal of Sports Medicine. 2011; 39(2), 415-420

Kujala UM, Kvist M, Heinonen O. Osgood-Schlatter’s disease in adolescent athletes. Retrospective study of incidence and duration. American Journal of Sports Medicine. 1995; 13:236.

Gholve PA, Scher DM, Khakharia S, et al. Osgood Schlatter syndrome. Current Opinion in Pediatrics. 2007;19:44-50.

Weiler R. Osgood-Schlatter Disease. BMJ, 2011;343:d4534

Atanda A., Shah S. and O’Brien K.Osteochondrosis: common causes of pain in growing bones.American Family Physician. 2011; 83(1), 285-291.

Wall EJ. Osgood-Schlatter Disease: practical treatment for a self-limiting condition. The Physician and Sports medicine (1998) 26(3):29-34

Elbow examination

Cite this article as:
Becky Platt. Elbow examination, Don't Forget the Bubbles, 2019. Available at:

2-year-old Alfie presents to the Emergency department having sustained an injury jumping on the sofa and falling off at home an hour ago.  His older sister says she thinks he put his right hand out as he fell, landing on the carpet.  Alfie’s mum gave him a dose of paracetamol after the injury and brought him straight to the ED because his elbow looked so swollen.  Alfie looks pale and tearful.