Gastroenteritis

Cite this article as:
Angharad Griffiths. Gastroenteritis, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.28790

Conor is a 10 kg, 13 month-old boy who’s presented to the ED with a 24-hour history of diarrhoea and vomiting.  He has had 5 episodes of non-bloody, non-bilious vomits. Since waking up this morning has two episodes of loose/watery non-bloody malodorous stools. They have not ‘flooded’ the nappy but were quite large.  He is taking sips of fluid (mixtures of water, milk, and juice being offered) and has only eaten half a digestive biscuit so far today.  He has had a fairly large wet nappy last night, but not since, though it’s now difficult to tell as his last nappy was dirty.  He is alert and looking around while being carried but is upset on leaving his mother’s arms.  He cries with tears, has a normal heart rate but his mother is worried about his dry lips.  She was told by a healthcare worker neighbour that he will “need a drip”. CRT, HR, and BP are normal.  His temperature is 37.8.  His nappy is dry and has been on for 3 hours now.  His capillary glucose measurement is 3.2.  You decide he’s probably mildly dehydrated.

Introduction

Gastroenteritis (GE) is the presence or diarrhoea or vomiting (or both) that may or may not be accompanied by fever, abdominal pain and anorexia.  Diarrhoea is the passage of excessively liquidy or frequent stools with liquid high water content.  Although often felt to be a common minor illness presentation, it is a major cause of childhood mortality and morbidity, causing millions of deaths worldwide in children in low and middle-income countries; of all child deaths from gastroenteritis 78% occur in Africa and South-East Asia. 

Gastroenteritis accounts for a huge proportion of GP and ED presentations. In Europe, acute gastroenteritis the third commonest cause of hospital admission, accounting for between 4-17% of admissions.  In Australia, gastroenteritis caused by rotavirus alone accounts for 115,000 GP visits, 22,000 ED visits and 10,000 hospital admissions a year, with an estimated cost of 30m Australian Dollars (£12m, €18m).  In the UK, 20% of GP consultations in the under 5’s are for GE.

It is imperative that the child with gastroenteritis is differentiated from more sinister causes of vomiting.  The presence of diarrhoea is reassuring but doesn’t exclude other intra-abdominal causes.  The same can be said for pain out of proportion with gastroenteritis, distension, peritoneal signs or localised tenderness.

Most cases are not associated with complications but when complications do occur, the commonest are electrolyte disturbance and metabolic acidosis.  Supplementary fluids through oral or intravenous routes are the most effective way to avoid these complications.

Gastroenteritis in low and middle-income countries can present differently, has different aetiologies, is often managed differently, and is a larger burden to healthcare systems in general than in high-income countries.  This post will focus on gastroenteritis in high-income countries. For more information about comparisons of guidelines across the world; Vecchio et al (2016) is an interesting read.

This is not meant to provide a clinical practice guideline; rather an overview of the illness.  Many (if not all!) paediatric emergency departments or general paediatric units have their own guidelines.

Pathophysiology

Worldwide, the commonest causes are viral pathogens, most commonly rotaviruses and noroviruses.  Viral infections cause damage to the small bowel enterocytes with resultant low-grade fevers and watery diarrhoea – classically without blood.  Rotavirus strains are seasonal and vary within different geographical areas.  The peak age for these infections is between 6 months and 2 years.  Children with poor nutrition are at higher risk of acquiring gastroenteritis and developing dehydration and complications.

Children with bacterial gastroenteritis are more likely to have bloody stool.
Escherichia coli and Shigella dysenteriae can be complicated by haemolytic uraemic syndrome (HUS).  This is an acute onset, microangiopathic haemolytic anaemia, thrombocytopaenia, acute renal impairment and multisystem involvement.  (Just to confuse things, HUS can present in the absence of bloody diarrhoea.)

Pathogens can be generalised into four groups:

  • Viral (70% of cases): Rotavirus, Norovirus, Adenovirus, Enterovirus
  • Bacterial (10-20% of cases): Campylobacter jejuni, Salmonella spp, Escherichia coli, Shigella spp, Yersinia enterocolitica.
  • Protozoa (unusual, accounting for <10%): Cryptosporidium, Giardia lamblia, Entamoeba histolytica
  • Helminths (very unusual): Strongyloides stercoralis

Transmission

Pathogens are spread mainly via the faeco-oral route, acquired by ingesting contaminated food or drink.  Water may be contaminated with bacteria, viruses, or protozoa. Undercooked (or inappropriately stored/cooked) meats and seafood are common culprits of bacterial pathogens.  Bacterial contaminants can produce toxins (e.g. Bacillus cereus in re-warmed rice or Staphylococcus aureus in ice-cream).

Pathogens causing gastroenteritis can also be transmitted without the patient being symptomatic.

Assessment

Gastroenteritis is a clinical diagnosis.  Enquire about sick/infectious contacts and potential sources (recent travel, food).  Enquire about the frequency of symptoms and intake of fluids.  Note the frequency of urination.  Note other things that may cause diarrhoea e.g. recent use of enteral antibiotics or chronic constipation with overflow diarrhoea the presenting feature. 

In the presence of signs such as high fever, long duration of symptoms, severe abdominal pain or bilious vomiting; review the diagnosis and do not immediately label as gastroenteritis.

Oral hydration fluids

Most children are not dehydrated and can tolerate oral fluids and so can be managed at home.  Take a look at Nikki Abela’s DFTB19 talk on top tips for a high yield dehydration assessment.

When children are only mildly to moderately dehydrated, as a general rule they can be treated with oral / enteral rehydration with low osmolality oral rehydration solution (ORS).  Worldwide, ORS is recognised as first line therapy and treating mild to moderate dehydration with enteral rehydration is supported by the WHO, European Society for Paediatric Gastroenterology and the American Academy of Paediatrics. The WHO recommends a low osmolality (hypo-osmolar) solution, usually containing sodium, potassium, chloride, carbohydrate (glucose) and a base.  Low osmolarity solutions reduce the need for IV fluids, reduce stool output and reduce vomiting frequency.

But… a major limitation to the use of ORS is its taste – and this is where apple juice comes in. For minimally dehydrated patients, half-strength apple juice is associated with fewer treatment failures compared to ORS and could suit as a more palatable alternative.  Take a look at a sweet summary (pun intended!) of the “apple juice trial”.

Breastfeeding should continue and a child can be supplemented with ORS if this is needed.  Children can go back to a normal diet after the illness has passed.

Enteral (oral / NG) versus IV hydration

Most studies show that enteral rehydration with ORS is just as effective as IV hydration in mild to moderate dehydration with a 2006 Cochrane analysis concluding that enteral rehydration is as effective if not better than IV rehydration with fewer adverse events and a shorter hospital stay.  It is also less invasive (even with NG placement) and anecdotally satisfaction is greater amongst parents.  It is very safe.

Enteral rehydration only fails in approximately 1 in 20-25 children.

Barriers to oral rehydration include unfamiliarity with the benefits, misconception that it takes longer than IV therapy, and that it has a high failure rate.

Contraindications to enteral rehydration include haemodynamic instability, abdominal distension, concern over ileus, absent bowel sounds, or impaired airway reflexes.

IV therapy is more invasive and involves placing and maintaining IV access.  There are also iatrogenic complications including electrolyte disturbance should inappropriate fluids / composition / volume / rate be used. 

But… in severely dehydrated children, put away the ORS and apple juice. They will need IV rehydration as first line.

Antiemetics

How can we support enteral fluids? Well, children who receive Ondansetron are less likely to vomit, have greater oral intake and are less likely to require IV hydration.  A Cochrane review demonstrates that Ondansetron also increases the proportion of children who stop vomiting when compared to placebo [RR1.4] and reduces the proportion of children needing IV therapy (and therefore admission rate) [RR 0.41].  Median length of stay is also shorter in the ED. 

Reported side effects are rare with very few reported side effects other than a few cases of increased frequency of diarrhoea.

Antiemetics alleviate vomiting by acting on the ChemoReceptor Trigger Zone and vomiting centre.  Ondansetron is a 5HT3 receptor antagonist.  This class of antiemetics have fewer adverse effects (than dopamine antagonists, anticholinergics, antihistamines and corticosteroids) and can be safely used in children.  The NICE guideline discusses its off-licence use (at time of publication it’s licence was for post-operative nausea and vomiting and chemotherapy induced vomiting).

Ondansetron prolongs the QT interval.  Recommendations are it should be avoided in those with long QT and should be used in caution where there may be electrolyte imbalance (severe dehydration) or on other QT-prolonging medication.

Ondansetron is relatively cheap  £1.71 for 10 4mg tablets and is available in oro-dispersible form (though these are much more expensive at £36 for 10x4mg tablets) and liquid (£36.82 for 40mg [50ml] bottle).

Probiotics

An ESPGHAN working group position paper on the use of probiotics in acute paediatric gastroenteritis concludes that:

  • Effects seen in clinical trial are probiotic strain specific (this makes ‘trial-life’ difficult to replicate in ‘real-life’).
  • A lack of evidence now doesn’t mean that there won’t be evidence sometime in the future. 
  • Safety profile of certain strains cannot be extrapolated to other strains.
  • Studies that report benefits in certain doses in certain settings have insufficient evidence to support a health benefit at lower doses and different setting.

…the jury’s still out.

Other therapies

Antibiotics and anti-diarrhoeal agents aren’t routinely recommended in the management of paediatric gastroenteritis.

For gastroenteritis in high income countries, the WHO does not recommend adding zinc to a treatment regimen (it is for gastroenteritis in low and middle income countries). 

Investigations

Routine lab testing in mild and moderate gastroenteritis is of little value in these patients and should be avoided unless clinically indicated.

This goes for stool samples too.  Stool cultures are not routinely indicated in immunocompetent children with non-bloody diarrhoea.

Confirmation of viral gastroenteritis after the child has been discharged from the ED, and likely on the road to recovery at home, adds very little to (A) the clinical diagnosis of viral gastroenteritis in the ED, (B) the management plan and (C) the clinical outcome. 

Should the investigation influence management, then stool sampling may be of benefit.  This could be applicable where an outbreak may be suspected in school or creche, where there may be a public health benefit.

Stool samples should be sent in cases of bloody diarrhoea, immunodeficiency and recent foreign travel.

How about tests for dehydration? Sadly there is no one test that correlates clinically with dehydration. Urine specific gravity in infants is unreliable because the kidney reaches adult concentrating abilities after the age of 1.  Also, the child often doesn’t begin urinating until rehydration has begun.

And glucose? Well, almost 10% of GE patients aged 1 month to 5 years in high income countries present with hypoglycaemia.  Risk factors for hypoglycaemia on presentation include a longer duration of vomiting and increased frequency of vomiting.  It would be reasonable to consider point of care glucose testing at triage for young children as identifying hypoglycaemia on clinical ground alone is difficult in this age group. 

Prevention

The key to reducing the burden (and generally for an all-round happier life!) is in the prevention of acute gastroenteritis.  Rotavirus vaccination is now commonplace thought the antibodies, the UK & Ireland and other countries around the world.  It is very effective.

In the home and in the ED…Handwashing, handwashing, handwashing!

Vaccination leads to a profound reduction in presentations and admissions and a fall in overall seasonal workload, often within the first year after the introduction of universal vaccination against rotavirus.  Even though only those under 1 year old are generally vaccinated, it has been shown to contribute to a significant herd effect with fewer cases than expected in older children. In Scotland, where initial vaccine uptake was 93- 94% during the first 2 years, annual rotavirus confirmed gastroenteritis cases fell by 84.7%, bed days reduced by 91% (from 325 to just 29), without any documented cases of intussusception.  Reductions were seen across all age groups despite only infants receiving the vaccine.  Similar results can be seen in other areas of the UK and Ireland.

The not to miss bits

  • Do not assume isolated vomiting in a child is gastroenteritis.  Consider other causes -these very widely from inborn errors of metabolism to diabetes mellitus, surgical obstruction to urinary tract infections. If you’d like to hear more, check out Dani’s talk on vomiting in children in DFTB Essentials.
  • Beware chronic diarrhoea in an infant – do they have malabsorption or is this a presentation of IBD or an immunodeficiency?
  • Beware the non-thriving child with diarrhoea.
  • And beware chronic diarrhoea.

But what happened to Conor?

Conor was given a cup of Dioralyte ORS and his favourite beaker filled with Dioralyte.  His mum was encouraged to give him syringes of 5 mls of Dioralyte frequently or for him to take sips from his beaker and was asked to document on a piece of paper how many he received.  He vomited after 30 minutes of this therapy.

You give him a dose of Ondansetron and place an NG tube and give him 100mls (10ml/kg) over 1 hour after deciding he does not need rapid rehydration but slightly more than normal maintenance.  He then receives maintenance volumes of Dioralyte via his NG, which he tolerates well and then starts to take his own sips from his beaker.

He does not vomit in the ED again, has one episode of loose stools, passes urine, and is tolerating fluids orally.  He’s smiling at you! You feel he can be discharged and council his mum regarding regular fluid intake, choice of fluids, of any red flags, and encouraged to return in the event of any concern.

Conor’s Dad calls to say that Conor’s 3 year old sister at home is now vomiting too!  But it’s OK – He’s not too worried about her and Conor’s Mum has advised his Dad to start giving her regular sips of Dioralyte at home…

References

Colletti JE, Brown KM, Sharieff GQ, Barata IA, Ishimine P. The Management of Children with Gastroenteritis and Dehydration in the Emergency Department. J Emerg Med [Internet]. 2010;38(5):686–98. Available from: https://dx.doi.org/10.1016/j.jemermed.2008.06.015

Elliott EJ. Acute gastroenteritis in children. Br Med J. 2007;334(7583):35–40.

Vecchio A Lo, Dias A, Berkley JA, Boey C, Cohen MB, Cruchet S, et al. Comparison of Recommendations in Clinical Practice Guidelines for Acute Gastroenteritis in Children. Gastroenterology. 2016;63(2):226–35.

Freedman SB, Willan AR, Boutis K, Schuh S. Effect of dilute apple juice and preferred fluids vs electrolyte maintenance solution on treatment failure among children with mild gastroenteritis: A randomized clinical trial. JAMA – J Am Med Assoc. 2016;315(18):1966–74.

BK F, A H, JC C. Enteral vs Intravenous regydration therapy for children with gastroenteritis: A meta-analysis of randomized controlled trials. Arch Paediatr Adolesc. 2004;158(1):483–90.

Hartling L, Bellemare S, Wiebe N, Kf R, Tp K, Wr C, et al. Oral versus intravenous rehydration for treating dehydration due to gastroenteritis in children (Review). 2006;

Fedorowicz Z, Jagannath V, Carter B. Antiemetics for reducing vomiting related to acute gastroenteritis in children and adolescents. [Internet]. Cochrane database of systematic reviews. 2011. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005506.pub5/full

NICE. Management of vomiting omiting in children and y young oung people with gastroenteritis : ondansetron. NICE GUIDELINES. 2014. p. 1–20.

Szajewska H, Guarino A, Hojsak I, Indrio F, Kolacek S, Shamir R, et al. Use of Probiotics for Management of Acute Gastroenteritis : A Position Paper by the ESPGHAN Working Group for Probiotics and Prebiotics. 2014;58(4):531–9.

Forrest R, Jones L, Willocks L, Hardie A, Templeton K. Impact of the introduction of rotavirus vaccination on paediatric hospital admissions , Lothian , Scotland : a retrospective observational study. 2017;323–7.

MARLOW RD, MUIR P, VIPOND I, TROTTER CL FA. Assessing the impacts from the first year of rotavirus vaccination in the UK. Arch Dis Child. 2015;100(Supl 3):A30.

Febrile Child Module

Cite this article as:
Team DFTB. Febrile Child Module, Don't Forget the Bubbles, 2020. Available at:
https://doi.org/10.31440/DFTB.27356
TopicFebrile child
AuthorSarah Timmis
DurationUp to 2 hours
Equipment neededNone
  • Basics (10 mins)
  • Main session: (2 x 15 minute) case discussions covering the key points and evidence
  • Advanced session: (2 x 20 minutes) case discussions covering grey areas, diagnostic dilemmas; advanced management and escalation
  • Sim scenario (30-60 mins)
  • Quiz (10 mins)
  • Infographic sharing (5 mins): 5 take home learning points

We also recommend printing/sharing a copy of your local guideline.

The expectation is for the learners to have watched or read one of the basic links before the session.

What is the deal with fever? a good overview of the approach to a febrile child

NICE fever guidelines for kids • LITFL covers the NICE guidelines, plus a bit more

If you prefer to listen rather than read, there is a podcast that although long, is worth listening to and covers the approach to a febrile child: (1hr 14 minutes)

Pediatric Fever Without A Source

Fever is one of the most common presentations to the paediatric emergency department; it scares parents and it makes children miserable. So why does fever occur? A fever is a natural physiological response to infection. It occurs when either an exogenous (eg micro-organisms) or endogenous (eg TNF, interleukin-1 or 6) pyrogen is activated. These pyrogens, via a number of mechanisms, activate the anterior hypothalamus which ultimately results in an increase in body temperature (The pathophysiological basis and consequences of fever).  

This is crucial to understand – your body is in control of your temperature. This is not something an infection is doing to your body; it is something your body is doing to the infection. Of note- this is different from pathological hyperthermia, where your temperature is elevated by either hypothalamic dysfunction or external heat. These are extremely rare. (Hot Garbage: Mythbusting fever in children)

The process of having a fever is believed to be a beneficial response to an infection. The mechanisms by which a fever helps protect you from infection include:

  1. Higher temperatures inhibiting growth/replication of pathogens
  2. Higher temperatures promoting the immune response to infection
  3. It is also worth noting that bacteria are killed more easily by antibiotics at higher temperatures, so there is also a potential third mechanism.

With all this considered, it is not the presence of the fever that is the issue, but what the reason behind the fever is. This is what we, as clinicians, need to discern. First of all, is it infection (most likely in the paediatric population), if so, is this a serious infection? Or is the fever caused by something else (malignancy, drugs, autoimmune, endocrine)?

A father attends the ED with his 4 year child, who has a 2 day history of fever, his most recent temperature was 39.9oC and this has prompted his visit to the emergency department. The father describes his child as being otherwise well, but is extremely concerned about the height of the fever.

Describe how you would assess the child?

What investigations and treatment options would you consider?

You are happy with your assessment of the child, and would like to discharge him, however his temperature is 38.5oC. How do you proceed?

Is this child sick?

The Paediatric Assessment Triangle (from DFTB)

In some instances it will be fairly obvious if the child is unwell, they just ‘look unwell’. A tool that can help you put a system to this assessment is the paediatric assessment triangle. Which considers the childs: appearance, breathing and circulation. This will let you consolidate what you are worried about and allow you to communicate this to your colleagues. 

If all these appear to be in order, this is a reassuring sign. A happy child playing in the waiting room, whilst eating a packet of crisps is much less likely to be unwell with a serious bacterial infection than one that is quiet. Remember to write what you have observed in your notes. 

NG143 Traffic light tool (from NICE)

Once you have some observations you can also use the NICE traffic light table – which helps categorise children into green (well), amber or red (potentially unwell). If they score red, you know they need further workup, and potentially quickly. Green, then they can probably wait a bit to be seen. 

Take a full paediatric history, specifically asking about:


Normal self?
Eating and drinking?
Passing urine?
Bowels opening?
Drowsy?
Pulling at ears?
Vomiting?
Rash/ lumps and bumps?
Siblings, anyone else unwell?
Travel?
Immunisations?

This should also give you an idea about how worried the parents are, is it just the temperature, or is it something else? A high fever with a child who seems their normal self is far less concerning than a child with a normal temperature that just isn’t right.

This needs to be thorough, given that the majority of these kids will be discharged without further investigation. This means looking in ears and throats, looking at the skin hidden under clothing, looking at joints, feeling pulses. So undress the child. You may find a petechial rash, a lump, or more likely, some very enlarged tonsils. Get the child to walk if they are old enough, and stand on one leg and then the other. And when it comes to ears and throats get the parent on board and show them how to hold the child properly. 

Whilst you are hunting for the source, also note the absence of one- look for the signs of the scary infections, the petechiae, the reduced air entry on a lung base, the red knee.

Are you happy examining a child? https://vimeo.com/60599216 gives some top tips on how to examine different age groups

Also read https://dontforgetthebubbles.com/finding-fever/ for a step by step fever focussed examination guide

This step depends very much upon your assessment of the child. If you have found a source-treat that as appropriate. If full history and examination does not provide you with an answer, you have a fever with an unclear source. NICE helpfully has a set of guidelines for these: (NICE fever guidelines for kids • LITFL)

  • Investigate fever with no source if they have any red features –  this includes FBC, CRP, B/C and urine.  Consider LP, CXR, UEC and gas if indicated. 
  • Investigate fever with no source if there are any amber features unless deemed unnecessary by an experienced paediatrician. (this is the bit that could cause you to become unstuck, and you may want a senior to look over these)
  • Check urine for all children with fever (over 37.5) and no source, even if they are green (on the NICE traffic light systemt).

Consider the use of paracetamol or ibuprofen to bring down a high temperature in a hot and miserable child. If it makes the child feel better, it will make the examination process easier for everyone. NICE advises alternating antipyretics.

In many children with fever, the cause will be viral, the source of which may be obvious, or may still be unclear. If they are in a low risk group with a normal urine, they may be ok to go home with advice and a leaflet on the use of antipyretics, fluid management and safety netting advice. However as stated above these are only guidelines, if you are not happy you can always investigate, or admit for observation, and parents can always come back.

If the child has a fever but you have a well child that you have no concerns about then you do not have to wait for the temperature to come down before discharge. 

Give the parents advice on recognising red or amber signs by providing written information and/or arranging follow-up- most EDs will have a ‘fever’ leaflet to give to parents. 

Educating the parents about the nature of fever is important. Explain that “We treat fever with anti-pyretics because it makes the child feel bad, not because fever itself is bad.” Fever is due to a functional immune response. It is what is causing the fever that has the potential to do harm. As a result what the fever is, is not nearly as important as how the child looks or behaves. (The caveat being an under 6 month old where the height of fever is relevant)

On discharge tell them If the fever lasts for more than 5 days, the child should at least have a repeat physical exam by a clinician.

Finish with “But come back if you are worried about the child, even if you have only made it to the car park/ house/ doors of the ED”  
A good summary in video form on seeing a feverish child: https://rolobotrambles.com/listen-look-locate-an-approach-to-the-febrile-child-tipsfornewdocs/

A 5 week old girl has been brought in by her mother. Her mother reports the child seemed irritable so she took her temperature and it was 38.2oC. Pregnancy and birth was unremarkable and there have been no concerns since her birth. The child is feeding well and the history and examination are unremarkable, observations in the ED have been within normal limits, apart from her current temperature which is 38.5oC. Your initial assessment has not provided you with an obvious source for the infection.

When is a temperature classed as a fever?

How would you investigate this child?

How would you manage this child if they had a white cell count of 17 x109/L?

NICE consider >38oC to be a fever

RCEM considers a temperature of 37.5-38oC to be a low grade fever 

However, most people would agree that the difference between .1 of a degree is not significant, therefore infants with a temperature of 37.9 vs 38oC should be managed in the same way.

This child is under 3 months old

Any child with a fever >38oC that is under 3 months old is at ‘high risk’ of serious illness (‘red’ on NICE’s traffic light table NICE fever guidelines for kids • LITFL). If they have a history of fever, but none on assessment remember to ask about antipyretics.

According to NICE this child requires bloods (FBC, CRP, Blood cultures), a urine sample and if the history and exam suggests, a chest X-ray and/ or a stool culture.

A lumbar puncture should be considered and is indicated if the child is:

  • less than 1 month 
  • 1-3 months and unwell; 
  • or 1-3 months with WCC<5×109/L or >15×109/L.

The discussion here is if the child is ‘unwell’, or not. You have a few tools that can help you – the paediatric assessment triangle and the NICE traffic light table (referenced in the above case) can help you decide. However if in doubt, the child will be investigated, and you should be speaking to the paediatric seniors.


If this child had a WCC of 20 then this is an indication for IV antibiotics. 

IV antibiotics are required for children under the same criteria that a lumbar puncture is indicated: 

  • if less than 1 month; 
  • 1-3 months and unwell; 
  • or 1-3 months with WCC<5×109/L or >15×109/L.

The choice of antibiotic will come down to trust guidelines.

A 7 week old has been brought in by her mother because she felt very hot today, and has been ‘a bit grizzly’. Mum has given paracetamol and brought her to ED. Her temperature is 37.6oC on triage. On initial assessment you have no concerns and remaining observations are within normal limits. 

How should a temperature be taken? 

How would you investigate and manage this patient?

NICE has recommendations on this:

Do not routinely use the oral and rectal routes to measure the body temperature of children aged 0–5 years.

They advise in infants under 4 weeks: 

  • measure body temperature with an electronic thermometer in the axilla 

In children aged 4 weeks to 5 years use one of the following:-

• electronic thermometer in the axilla

• chemical dot thermometer in the axilla

• infra-red tympanic thermometer

It’s worth checking what your department uses and what the parent has been using. 
There are some small studies with low numbers of patients that suggest that layers of clothing can raise the skin temperature by up to 2.5°C with a minimal rise in rectal temperature in the very young (Feel the heat). Therefore undress children who seem inappropriately overdressed.

For this patient, guidelines are helpful, but they will not tell us what to do.

We know that 

1. Any child with a fever >38°C under 3 months old is a ‘red’ on NICE’s traffic light system, and this makes them at high risk of serious illness.

2. NICE guidelines suggest that the parents subjective perception of a fever should be considered valid and taken seriously by healthcare providers. 

There is a temptation to treat a child who is apyrexial in the department differently to one that does have a fever. Consider:

  • Has this child had an antipyretic? 
  • In the young, mums are usually right (There is a study from 1984 that shows in children under 2 yrs, mums were correct 90% of the time when they thought their child had a fever, although this dropped to 50% accuracy in over 2 year olds.)
  • Those with fever at home are equally at risk as those with fever in the department (A BMJ study reports that infants <60 days of age, with a history of documented fever are at equal risk for bacteraemia or meningitis as those with fever in the department. https://adc.bmj.com/content/103/7/665.)

So in summary, we have an infant with a normal temperature, who probably had a fever this morning. There are at least two ways of managing this, one is to treat as a fever which therefore means bloods (FBC, CRP, B/C), urine and if history suggests, a CXR and or stool culture. Given that there was parental concern this is probably the preferable option. The other is a period of observation to see how the child progresses, and see whether or not they spike a fever. 

Given that there are no clinical concerns at present, antibiotics prior to blood results are not indicated.

For a debate surrounding overtreating infants read https://dontforgetthebubbles.com/fever_under_60_days_of_age/

A 3 year old boy has returned to ED with a history of 6 days of fever, they have seen the GP twice, two and four days ago, and told it was a viral illness. However the fever is persistent and his parents are concerned. His past medical history includes two admissions for viral wheeze when he was younger, but is otherwise unremarkable. All immunisations are up to date, he goes to nursery and lives with his parents, he has no siblings but his mother is 9 weeks pregnant. On examination the child seems grumpy, he has a fever of 38.8 and a HR of 150 he has a rash across his face and torso and evidence of conjunctivitis.

You think the rash looks morbilliform, what are your concerns and how will you proceed?

What other differentials should you consider, and what examination findings would you be looking for?

How would you work this patient up?

Measles – A brief historical & clinical review

The MMR in the UK is given at 12 months and 3yrs 4 months, so this child will have had the first immunisations affording him 80-95% protection, https://em3.org.uk/foamed/15/7/2019/lightning-learning-measles. Measles therefore is unlikely but possible. Once he has had the second vaccination, this is quoted to afford 99% protection.  

Hopefully you are seeing this child in a side room, as measles can survive for up to 2 hours in air and is very contagious in the un-immunised population. 

It is likely wherever you are in the world, you will need to report this to your public health body. 

His mother is pregnant, check her vaccination status, if this is not complete and she has no history of disease, you need to advise her to see her GP ideally today, she may need a measles titre and, if this does not show previous exposure to the disease, human normal immunoglobulin (HNIG). You also need to enquire about other immunosuppressed/ non immunised contacts. 

A patient is infectious from 4 days before the onset of rash to 4 days afterwards, therefore he will need to be isolated until this period is up and nursery and other contacts need to be informed. 

Serum and saliva testing for measles is available.

Most children with measles can be discharged home

UK guidelines on managing measles exposure : Guidelines on Post-Exposure Prophylaxis for measles June 2019 

Poster: https://em3.org.uk/foamed/15/7/2019/lightning-learning-measles

Recurrent or Periodic Fevers – investigate or reassure? 

Think infection, inflammation or neoplastic. We know infection is common in paediatrics, and the other two are less so. The list of differentials is probably almost endless. There is a good article which lists a whole heap of causes of fever in children, and investigations which can be performed. 

However with this presentation, it is important to consider Kawasaki disease with this time scale of fever and measles. Other conditions worth considering are listed below: 

• Streptococcal disease (e.g. scarlet fever, toxic shock syndrome)

• Staphylococcal disease (e.g. scalded skin syndrome, toxic shock syndrome)

• Bilateral cervical lymphadenitis

• Leptospirosis and rickettsial diseases

• Stevens-Johnson syndrome and Toxic Epidermal Necrolysis

• Drug reactions

• Juvenile Chronic Arthritis

Kawasaki Disease 

You are looking for evidence of Kawasaki disease: The diagnosis is made on the basis of the following clinical criteria (A + B):

A. Fever ≥5 days

B. At least 4 of the 5 following physical examination findings:

  • 1.Bilateral, non-exudative conjunctivitis
  • 2.Oropharyngeal mucous membrane changes – pharyngeal erythema, red/cracked lips, and a strawberry tongue
  • 3.Cervical lymphadenopathy with at least one node >1.5 cm in diameter
  • 4.Peripheral extremity changes 
    • acute phase: diffuse erythema and swelling of the hands and feet
    • convalescent phase: periungual desquamation (weeks 2 to 3)
  • 5.A polymorphous generalised rash – Nonvesicular and nonbullous. There is no specific rash that is pathognomonic for KD

This child has had a fever for 6 days, is tachycardic and the source currently is unclear. It may be measles, however this is not clear cut. He is therefore not going home. Depending on other findings on examination he may also fit the criteria for Kawasaki disease he certainly needs bloods, FBC, U+E, LFTs, CRP, ESR, cultures and a urine dip. He does not require IV antibiotics at this point.

Kawasaki Disease the first 4 minutes covers the presentation and investigation of Kawasaki disease

Communication: Septic screen , taken from  Simulation Library, PaediatricFoam

Which of these is true, a 60 day old with a temperature of 38.5oC:

A: Fulfils the criteria for a lumbar puncture

B: Can be discharged without further investigation 

C: Needs IV antibiotics

D: Needs urine sent for urgent microscopy and culture

The correct answer is D.

This child will need further investigation, at the least bloods and serum cultures, however if they are well they may not necessarily need antibiotics or a lumbar puncture. All children under 3 months need urine sent, not dipped. Use dipstick testing for infants and children 3 months or older.

Which of these is false?

A: The height of the fever can make a difference to the how the child is managed

B: If a fever doesn’t reduce with an antipyretic the child needs admission to hospital

C: A 28 day old with a temperature of 38.5oC will need FBC, CRP and Blood cultures

D: It is recommended that children aged 4 weeks to 5 years have their temperature taken with an axillary probe or tympanic thermometer

The correct answer is B.

A is true because the height of the temperature does make a difference to the management of those under 6 months old

Presence of a fever, even one that does not reduced with an antipyretic is not an indication of a serious infection. It is perfectly acceptable to discharge a well child with a fever, with good safety netting. 

Which of these is true?

A: Kawasaki disease can be diagnosed with fever for > 5 days plus 3 of the B symptoms

B: Fever of over 39oC in a 3-6 month old automatically needs a full septic screen 

C: The higher the fever, the more likely it is to be a serious bacterial infection

D: Measles is infectious from 4 days before the onset of the rash to 4 days afterward

The correct answer is D.

Kawasaki disease is diagnosed with fever >5 days and 4 out of 5 B symptoms

A fever of >39 in a 3-6 month may need a full septic screen, the temperature alone would push them into NICE’s ‘amber’ category. However it depends on a few factors, including whether there is an obvious source and NICE recommends a review by an experienced paediatrician before performing a septic screen automatically on these patients. 

C is not true, there is no good consistent evidence to suggest a higher fever means a more serious infection 



Please download our Facilitator and Learner guides

Self-reported pain scales

Cite this article as:
Crystal McLeod. Self-reported pain scales, Don't Forget the Bubbles, 2018. Available at:
https://doi.org/10.31440/DFTB.14701

A 6-year-old boy is brought to the Emergency Department after a fall from a tree. He walks into triage but is holding his arm and grimacing with pain. Immediately, you conduct a focused physical exam of his arm and rule out other injuries. It is obvious to you that this patient is in pain. You would like to assess his experience of pain in more depth. How are you going to do it?