Neonate resus update 2021

2021 Resuscitation Council UK Guidance: What’s new in neonates?

Cite this article as:
Anandi Singh, Jilly Boden and Vicki Currie. 2021 Resuscitation Council UK Guidance: What’s new in neonates?, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.33461

We’ve looked at the changes in the paediatric resuscitation guidelines, here we take a closer look at neonatal guidelines.

Supporting transition at birth

There are no major changes for the newborns (just yet), but there is clarification on certain practices since the last 2015 update.

The umbilical cord: Leave it hanging?

We should delay clamping the cord for sixty seconds after the first cry. Researchers are looking at the benefit of beginning resuscitation whilst the cord still remains intact. Immediate cord clamping (ICC) has been shown to significantly reduce ventricular pre-load while simultaneously adding to left ventricular afterload.

If delayed cord clamping (DCC) is not possible, ‘milking of the cord’ can result in some transient benefits. There may be less need for inotropic support and fewer transfusions but no overall reduction in morbidity or mortality in the premature. There is insufficient data to suggest any benefit in babies 34 weeks to term. Milking of the cord is not recommended below 28 weeks as one large study was terminated early after babies were found to have higher risk of intraventricular haemorrhage.

Inflation and ventilation breaths: Increased pressure

When delivering inflation breaths, the resuscitation guidelines recommend slightly increased pressures than before

<32 weeks gestation, 25cm H2O for peak inspiratory pressure
>32 weeks, we should be using 30cm H2O initially slowly titrating up to achieve good chest wall movement.

Set the PEEP at at 5cm H2O for all babies that need assisted ventilation.

Laryngeal Mask Airways

LMAs are better than (in systematic review of 7 studies, N=794) bag-mask ventilation. Using them reduces the need for intubation and the duration of ventilation, though the evidence was low/moderate quality. The updated guidelines suggest more proactive use of an LMA in babies >34weeks and >2kgs.

Oxygen: Start low

  • For babies >32/40, the guidelines remains unchanged, start in air, monitor SpO2 and increase as needed. It can take several minutes to reach normal saturation levels.
  • For babies born between 28-32 weeks gestation, a small amount of supplemental oxygen (21-30% FiO2) may help with the effort of breathing and reduce mask ventilation time.
  • Start babies born before 28 weeks gestation on 30% FiO2.
  • Turn the FiO2 immediately up to 100% if you have to start chest compressions.

Thick Meconium: Don’t rush to suction

In the past, if a ‘non-vigorous’ baby (i.e. hasn’t cried yet), was delivered through thick meconium, you were supposed to visualise the cords with a laryngoscope and suction before providing inflation breaths. There wasn’t great evidence for this and the thought was that it simply delayed ventilation in an otherwise apnoeic baby.

What about adrenaline dosing?

There are still a few studies looking at the dosing of adrenaline in neonates but now the recommended dose is 20 micrograms/kg (0.2 mL/kg of 1:10,000 adrenaline (1000 micrograms in 10 mL)).  This should be repeated every 3-5 minutes as needed.

Focus on temperature: Aim for 36.5-37.5°C

The admission temperature of all (non-asphyxiated) babies across all settings and gestational ages, is a strong predictive factor for morbidity and mortality.

  • Use heated and humidified gases from the outset if you can, for babies born <32 weeks. A meta-analysis of 2 RCTs (N=476) suggested that this reduced the rate of hypothermia on admission by 36%.
  • Skin-to-skin care may be enough to keep >32 week babies warm, though a study focusing on 28-32+6 gestation babes suggested that this may be sub-optimal compared to conventional means of warming (a mix of radiant heaters, plastic bags, heated mattresses etc).

For each 1 degree Celsius decrease in admission temperature below the recommended range, an increase in the baseline mortality by 28% has been reported.

Emergency access: You know the drill

Umbilical catheterisation remains the prime means of vascular access.   If this is not an option, then use intraosseous access to give emergency drugs and volume.  Simulation studies suggest that the IO route may be quicker, though not without risk. Adverse events such as osteomyelitis, compartment syndrome and fractures have occurred.

Neonatal resuscitation updates

Stopping resuscitation should be considered by the team if there is no response after 20 minutes and reversible (e.g. tension pneumothorax, hypovolaemia, equipment failure) have been discounted.

Selected references

Resuscitation Council UK Guidelines 2021 https://www.resus.org.uk/library/2021-resuscitation-guidelines

Madar J et al European Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of infants at birth (2021). https://doi.org/10.1016/j.resuscitation.2021.02.014

ERC Guidelines 2021: https://cprguidelines.eu/

Wyckoff MH, ET AL. Neonatal Life Support Collaborators. Neonatal Life Support 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2020 Nov;156:A156-A187.  https://doi.org/10.1016/j.resuscitation.2020.09.015 Epub 2020 Oct 21. PMID: 3309891

Paediatric resus update 2021

2021 Resuscitation Council UK Guidance: What’s new in paediatrics?

Cite this article as:
Anandi Singh, Jilly Boden and Vicki Currie. 2021 Resuscitation Council UK Guidance: What’s new in paediatrics?, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.33450

You are working in Paeds ED. The alert phone rings for a 2-year-old boy coming in a cardiac arrest. You hear some colleagues talking about Plasmalyte, capnography, and reduced respiration rates. Don’t panic! You had heard somebody mention that there were new resuscitation guidelines out though you’ve not read them yet. How much could have really changed?

Let’s take a step back. Where do these resus guidelines come from?

The Resuscitation Council UK recently issued their 2021 guidelines. They are tailored to UK clinical practice and derived from the European Resuscitation Council (ERC) 2021 Guidelines. The International Liaison Committee on Resuscitation (ILCOR) is responsible for the International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations (CoSTR). This consensus document is then used by international member organisations to develop guidelines. They are updated roughly every five years. CoSTR 2020 formed the ERC 2021 guidance.

The guideline development process utilised systematic reviews, scoping reviews, evidence updates and engagement from worldwide stakeholders (including members of the public and cardiac arrest survivors).

The 2021 Resuscitation Council UK Guidance covers both adult and paediatric basic and advanced life support. We have reviewed the corpus of generic guidance, some key additions and the main changes to both paediatric and neonatal life support algorithms.

The new guidelines do not specifically include the management of arrest secondary to COVID-19. You can be find them at https://www.resus.org.uk/covid-19-resources.

Epidemiology of Paediatric Cardiac Arrest

Epidemiology of paediatric cardiac arrest

Changes in paediatric resuscitation

Paediatric Basic Life Support

There are a few minor changes in 2021 to the paediatric BLS guidelines. They all apply to children up to 18 years of age (except for newborns).

Initial Assessment

Assess for signs of life simultaneously with the delivery of rescue breaths. If there are no signs of life, start chest compressions immediately after initial rescue breaths (you do not need to pause here).

Deliver five rescue breaths followed by ventilation breaths with compressions at a ratio of 15:2.

Emphasis on achieving high quality CPR

We should use mobile phones on loudspeaker for dispatcher guidance on how to deliver CPR or to summon emergency medical services (EMS) without leaving the victim.

Whilst the majority of paediatric cardiac arrests are respiratory in nature, effective chest compressions still play their part. Do these on a firm surface( so not a bed) and to a depth of at least one third the anterior-posterior diameter of the chest (or by 4cm in an infant and 5cm in a child). The rate remains at a rate of 100-120/min. The chest needs to fully recoil after each compression and around 80% of the CPR cycle should be composed of compressions.

Airway

The Resus Council recommend cuffed endotracheal tubes in children, if intubation is needed, and uncuffed tubes in neonates (Ed. note-we’ll look at this another day). Monitor this cuff pressures and try to keep it below 20mmHg.

Breathing

Target oxygen saturations (SpO2) of 94-98% with as little supplemental oxygen as possible. Avoid giving pre-emptive oxygen therapy without signs of hypoxemia or shock and try to avoid readings of up to 100% – unless in situations such as carbon monoxide poisoning. Hyperoxia appears to be almost as harmful as hypoxia.

High-flow nasal cannula oxygen (HFNC) or continuous positive airway pressure (CPAP)/non-invasive ventilation (NIV) support should be considered in children that have adeqaute respiratory drive but are not responding to low-flow oxygen. Bag-mask ventilation (BMV) is recommended in children with inadequate respiratory drive. If oxygenation/ventilation doesn’t improve, or ventilation may be ongoing, it is time for more advanced airway techniques – supraglottic airway devices (SGA) or endotracheal intubation.

Changes to paediatric resuscitation guidelines

Monitor capnography

End-Tidal CO2 monitoring is the gold standard, whether using an SGA or bag-valve-mask ventilation. Waveform capnography can reliably confirm tracheal tube placement when has a perfusing rhythm, as long as they are over two kilos in weight. There is a reasonable correlation between ETCO2 and PaCO2 but the guidelines do not go so far as suggesting a threshold ETCO2 or PaCO2 for stopping the resuscitation attempt.

What can the ETCO2 waveform tell us in resuscitation?

Use of end-tidal in paediatric resus

Circulation

No single finding can reliably identify the severity of circulatory failure. We still need to reassess frequently and after every intervention. This can be done by monitoring mean arterial blood pressure, trends in lactate, urine output and, if competent, ultrasound findings.

Vascular Access

Peripheral intravenous (IV) lines are the first choice for vascular access but it’s just two attempts and you are out. Then it is time to move on.

Intraosseous (IO) access is the primary rescue alternative. Remember it can be painful so give proper intraosseous analgesia before giving the first fluid bolus in every (awake) child.

A balanced approach to fluids

In children with shock, use a 10 mL/kg fluid bolus repeated up to 40-60 mls/kg.

How much should we give? There is an emphasis on smaller volumes with careful reassessment after each bolus to enable early identification of signs and symptoms of fluid overload. These include hepatomegaly, bilateral basal lung crackles, and jugular venous distention. Current evidence shows that a restrictive approach to fluid therapy is at least as effective as larger volumes.

In children with shock secondary to haemorrhage, we need to keep crystalloid boluses to a minimum (max 20mls/kg). Early use of blood products is the way to go in children who present with severe trauma.

Having decided to give fluid, what should we give? Balanced isotonic crystalloids (e.g. Plasmalyte,) are the first choice with 0.9% sodium chloride being an acceptable alternative. Saline can induce hyperchloremic acidosis and may be associated with a worse outcome. The evidence for Hartmanns/Ringer’s lactate is still limited and shows ‘no more than a trend’ (?) towards a better outcome – so this is still left a bit unclear… Don’t use dextrose-based solutions for volume replacement – these will be redistributed rapidly away from the intravascular space and will cause hyponatremia and hyperglycaemia which may worsen neurological outcome.

Consider using permissive hypotension (mean arterial blood pressure (MAP) at 5th percentile for age) in traumatic injury. Be mindful that It is contraindicated in children with traumatic brain injury. You need to maintain a reasonable cerebral perfusion pressure. The Resus Council UK guidelines recommend giving tranexamic acid (TXA) to all children requiring transfusion after severe trauma and/or significant haemorrhage, as long as it is within three hours of injury

Vasoactive drugs need to be started early In children with persistent decompensated circulatory failure. Noradrenaline or adrenaline are recommended as first-line agents. Vasoactive drug choice may be directed by individual patient circumstances once more detailed information about the pathophysiology is available..

Dopamine is no longer recommended but can be used if adrenaline and noradrenaline are not available.

Cardiac Arrest in Special Circumstances

Specific approach to CPR needed during specific conditions such as cardiac surgery, neurosurgery, trauma, drowning, sepsis, and pulmonary hypertension. However, there are no major changes to any of these guidelines.

When managing traumatic cardiac arrest we need to fix the reversible causes.

Traumatic cardiac arrest guidelines

We need to start simultaneous chest compressions whilst treating these causes. This trumps adrenaline use. Though exceedingly rare we should think about thoracotomy in paediatric TCA patients with penetrating trauma with or without signs of life on ED arrival.

Extracorporeal Life Support (ECLS)

Extracorporeal cardiopulmonary resuscitation (E-CPR) is the implementation of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) in a patient with refractory cardiac arrest. E-CPR should only be considered if it is readily available and there is a (presumed) reversible cause.

For specific subgroups of children with decompensated cardiorespiratory failure (e.g. severe refractory septic shock or cardiomyopathy or myocarditis and refractory low cardiac output), the pre-arrest use of ECLS can be lifesaving and provide end-organ support, preventing cardiac arrest.

Post-cardiac arrest care

Avoid hypoxia, hypotension and fever in children and infants who have a return of spontaneous circulation (ROSC) following cardiac arrest. Targeted temperature management of children post-ROSC should comprise active treatment with either normothermia or mild hypothermia and continuous invasive temperature monitoring.

Changes in adult resuscitation guidance

Are you curious about the big people?

For the adults, there are no major changes in ADULT BLS/ ALS 2021 guidelines. The guide states that a child is any person up to 18 years – in terms of when we switch from paediatric to adult algorithm. If the child looks like a child, we use the paediatric algorithm. If it turns out that your patient looks more youthful than they actually are then little harm will ensue. They also recommend a stepwise approach to airway management. The expert consensus is that: providers with a high first-pass success rate should perform tracheal intubation.

The use of adrenaline is controversial. We don’t have great evidence for either the dosing or the timing of doses. A large trial in the UK (PARAMEDIC 3, expected Autumn 2021) will look in more detail at the timing of adrenaline and the potential benefits of an IO first approach.

There is a greater emphasis on POCUS and ECMO. This reflects the increasing evidence as a rescue therapy in certain adult patients in cardiac arrest. There is an increasing role of point-of-care ultrasound (POCUS) in peri-arrest care for diagnosis, but it requires a skilled operator, and the need to minimise interruptions during chest compression.

As with the paediatric population: there is a greater recognition that patients with both in- and out-of-hospital cardiac arrest have premonitory signs, and that many of these arrests may be preventable.

What else is in the guidance?

Health inequality (HI) and it’s impact on cardiac arrest outcome

There is vast inequality in the incidence of cardiac arrest, use of bystander CPR and the distribution of public access defibrillators. Deprived areas, and areas with a greater proportion of residents from minority ethnic backgrounds, have a higher incidence of cardiac arrest, lower incidence of bystander CPR and lower access to public access defibrillators. This needs further discussion and research. Teaching CPR to children in all schools would be a way of improving some of these inequalities.

Improving education and systems can save (more) lives

50% of out-of-hospital cardiac arrests (OHCAs) are witnessed. Bystanders perform CPR in 70% of these. Public education is crucial in saving lives. In 2018, 59% of members of the public in the UK reported having received training in CPR and 19% in how to use an automated external defibrillator (AED).

In 2019, over 291,000 people in the UK were trained in CPR as part of World Restart a Heart Day. Teaching the essential core skills in resuscitation will improve patient survival.

How to get better at paediatric resus

Technology-enhanced education, as well as simulation, can be used to improve teaching and engage learners. Social media and smartphone apps can be used to engage the community. A new section has been added to the guidance named ’Systems Saving Lives’ with the intended audience being governments, managers in health and education systems, health care professionals, teachers, students and members of the public. By emphasising the importance of the connections along the Chain of Survival, we can improve the performance of resuscitation systems.

4 Key areas that have been highlighted are:

What's new in paediatric resus guidelines

Ethics

Another key area in the new guidelines is around integrating decisions about CPR in advanced treatment plans (e.g. Recommended Summary Plan for Emergency Care and Treatment (ReSPECT) process). The guideline highlights the need for communication strategies and interventions to support discussions with patients and their family around resuscitation.

What might we see in the next revision…

  • Could IO become the first choice route of adrenaline?
  • Will we still be using adrenaline in all arrest situations?
  • Will (ab)normal saline be removed entirely?
  • Will we have more concrete evidence on using Hartmann’s/ Ringer’s Lactate in resuscitation fluids?
  • Will we have more information on the barriers and motivators to bystander CPR and AED use in respect of ethnic, socio-economic, cultural and educational background?

Selected references for the updated Resuscitation Council UK guidelines

Resuscitation Council UK Guidelines 2021 https://www.resus.org.uk/library/2021-resuscitation-guidelines

Madar Jet al European Resuscitation Council Guidelines 2021: Newborn resuscitation and support of transition of infants at birth (2021). https://doi.org/10.1016/j.resuscitation.2021.02.014 ERC Guidelines 2021: https://cprguidelines.eu/

Wyckoff MH, ET AL. Neonatal Life Support Collaborators. Neonatal Life Support 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2020 Nov;156:A156-A187.  https://doi.org/10.1016/j.resuscitation.2020.09.015 Epub 2020 Oct 21. PMID: 3309891

Much ado about Meckel’s

Cite this article as:
Peter Tormey. Much ado about Meckel’s, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.33008

Robert is a 14-year-old boy who re-presents to ED with a history of rectal bleeding. He has had four or five episodes of passing bright, red blood PR over the last three days, having been a previously well child. He has also had four or five episodes of non-bilious vomiting.

Mum has noticed that he has now become pale and lethargic.

On his first presentation to ED, two days prior, the working diagnosis was bacterial gastroenteritis. His haemoglobin at that time was 99g/L. It has fallen to 45g/L on this presentation.

On examination, he is very pale, his heart rate is 120, and his blood pressure 95/65.

What are your differentials at this point?

Infectious

  • Bacterial: Campylobacter, Salmonella, Shigella, E. coli, Yersinia, C. difficile
  • Viral: rotavirus, COVID-19

Inflammatory

  • Inflammatory bowel disease

Vascular

Bowel obstruction

  • Intussuception
  • Malignancy

Others

  • Meckel’s diverticulum
  • Anal fissure
  • Haemorrhoids
  • Trauma/NAI

What investigations would you perform?

  • Bloods: FBC, U+E, LFTs, CRP, ESR, VBG, blood culture, coagulation screen
  • Stool culture, stool for C.difficile
  • Covid swab
  • Abdominal ultrasound
  • CT abdomen/pelvis
  • Colonoscopy
  • Meckel’s scan

What is Meckel’s Diverticulum?

You may remember “The Rule of Two’s” from medical school.

MD is a congenital abnormality of the small intestine that is present in 2% of the population. 2% of these people will become symptomatic. It is 2 inches long and 2 feet from the ileocoecal valve. There can be 2 types of ectopic tissue: gastric or pancreatic. There is a 2:1 male preponderance.1,2,3

MD comprises the three layers of the intestinal wall and is, therefore, a true diverticulum.3 It results from the incomplete obliteration of the omphalomesenteric duct. The omphalomesenteric duct connects the yolk sac to the intestinal tract during early foetal life and is usually obliterated by the seventh week of gestation. Failure to regress can result in a spectrum of abnormalities, including: MD, patent vitelline duct, fibrous band, sinus tract, umbilical polyp and umbilical cyst.3

Comparison between vitelline fistula and meckel's

What happens to the symptomatic 2%?

The presentation of MD is highly variable. It is best to consider the different presentations based on the underlying anatomical or pathological processes the diverticulum can undergo.

1. It gets in the way

The abnormal anatomy in MD can lead to intestinal obstruction. In children, this usually presents as intussusception or volvulus.3

The diverticulum acts as the lead point in intussusception. These patients present with abdominal pain. The symptoms can be non-specific, particularly in pre-verbal children. They are “off form”, or parents complain about poor feeding, constipation, abdominal distension. As you can see from Robert’s case, intussusception can also lead to massive GI haemorrhage.

Volvulus of the intestine may occur around the fibrous cord that connects the Meckel’s to the umbilicus.4

2. The ectopic gastric tissue can cause an ulcer

The ectopic gastric mucosa in the diverticulum can secrete acid which results in ulceration of the small bowel. This usually presents as painless bleeding, which can be massive in nature.3 It may also present due to anaemia from chronic bleeding. The bleeding is usually dark red or maroon in colour.3 Robert’s Technitium-99m scan (or Meckel’s scan) was positive, suggesting the presence of gastric mucosa, so he may have intussusception plus ulceration, both leading to his massive GI haemorrhage.

3. It gets angry

As the Meckel’s is a blind ending diverticulum, it can undergo a process of inflammation, similar to appendicitis. Obstruction at the base of the diverticulum leads to bacterial overgrowth and inflammation. This can present with fever, vomiting and abdominal pain, which is often indistinguishable from acute appendicitis. The MD may also perforate, leading to diffuse peritonitis and  a very unwell patient.

As these symptoms are all non-specific, it is important to think of MD as a diagnosis in children presenting with any of the symptoms above.

How is it diagnosed?

MD requires a high index of clinical suspicion to aid diagnosis. Most imaging modalities are non-specific but can still be helpful. X-ray or ultrasound may show a small bowel obstruction and intussusception.5 Finding a normal appendix on ultrasound, may lead to careful consideration of MD as an alternate cause.

A Meckel’s scan may be performed. This is a nuclear medicine scan using Technitium-99m, which accumulates in the ectopic gastric mucosa (see Image 2).5 The test is reliant on the presence of gastric mucosa, which is only present in 4.6-71% of symptomatic MD.5 Premedication with H2 antagonists may increase the accuracy of the scan.5

Radionuclide Meckel scan
Case courtesy of Radswiki, Radiopaedia.org. From the case rID: 11598

MD is often only confirmed on exploratory laparoscopy or laparotomy.

How is it treated?

Definitive treatment is surgical resection of the diverticulum, either laparoscopically or by laparotomy. Simple diverticulectomy and closure of the ileum is acceptable except in cases of GI bleeding where the ulcer may extend to the adjacent ileum, in which case segmental resection with re-anastomosis of the small bowel should be carried out.4

Robert’s haemoglobin is 45. He requires multiple transfusions with packed red cells, FFP and fibrinogen. He is stabilized and transferred to PICU.

He has an emergency OGD and colonoscopy. They do not reveal the source of bleeding. His abdominal ultrasound shows a small bowel intussusception, suspicious for Meckel’s diverticulum (MD). He has a Meckel’s scan which confirms MD. He undergoes surgical resection of the diverticulum and recovers well.

Who was Meckel?

Johann Friedrich Meckel (the younger) was a German anatomist whose principle interest was the study of congenital malformation and the developmental aspects of the lungs and bloods vessels.6

Interestingly, MD was first described by Wilhelm Fabricius Hildanus, a German Surgeon, in 1598.7 It wasn’t named, however, until Meckel reported his research on the diverticulum’s anatomy and embryology in 1809.

He is also responsible for the medical eponyms Meckel cartilage and Meckel syndrome.

He is called Johann Friedrich Meckel The Younger because his grandfather was called by the same name and was also an anatomist, as were his father, younger brother and son.

You can find out more about him and the Meckel anatomist dynast on LITFL.

References for Much Ado about Meckel’s

1. Meckel’s Diverticulum [Internet]. [cited 2021 Apr 1]. Available from: https://pedemmorsels.com/meckels-diverticulum/

2. Rule of 2s in Meckel diverticulum | Radiology Reference Article | Radiopaedia.org [Internet]. [cited 2021 Apr 1]. Available from: https://radiopaedia.org/articles/rule-of-2s-in-meckel-diverticulum-1

3. Keese D, Rolle U, Gfroerer S, Fiegel H. Symptomatic Meckel’s Diverticulum in Pediatric Patients—Case Reports and Systematic Review of the Literature. Front Pediatr [Internet]. 2019 Jun 26 [cited 2021 Apr 12];7(JUN):267. Available from: https://www.frontiersin.org/article/10.3389/fped.2019.00267/full

4. Ivatury RR. Meckel’s diverticulum and the eponymous legend. Vol. 87, Journal of Trauma and Acute Care Surgery. Lippincott Williams and Wilkins; 2019. p. 451–5.

5. Hansen C-C, Søreide K. Systematic review of epidemiology, presentation, and management of Meckel’s diverticulum in the 21st century. Medicine (Baltimore) [Internet]. 2018 Aug 1 [cited 2021 Apr 12];97(35):e12154. Available from: https://journals.lww.com/00005792-201808310-00091

6. Johann Friedrich Meckel The Younger • LITFL • Medical Eponym Library [Internet]. [cited 2021 Apr 12]. Available from: https://litfl.com/johann-friedrich-meckel-the-younger/

Defining Learning Disability

Cite this article as:
Liz Herrieven. Defining Learning Disability, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.33287

In all areas of paediatric practice (and beyond), we come into contact with children with a learning disability, learning difficulties or autism. Terminology is important, not only for making sure we understand a child’s diagnosis properly, but also for providing the best possible care. Getting it right can also help gain the trust of parents and carers who will often know far more about appropriate language use than we clinicians. This guide aims to describe the key points to remember – some of them easier to grasp than others.

Learning Disability

Let’s start with learning disability or LD. 2.5% of the children in the UK have a learning disability, yet it’s one of the most commonly confused terms. Probably the most pragmatic and descriptive definition is that used by Mencap, a UK charity supporting people with LD: “A learning disability is a reduced intellectual ability and difficulty with everyday activities – for example household tasks, socialising or managing money – which affects someone for their whole life.” The World Health Organisation keeps it short, although open to discussion and interpretation. For them it’s “a state of arrested or incomplete development of mind.”

Having a learning disability means an individual will not only find learning difficult but also face challenges with retaining, processing, reasoning and deducing information. Some people will find different areas of learning more challenging than others. Children with Down syndrome have a relative strength in visual learning and find learning or remembering auditory information more difficult. Building on strengths can help to balance out some of the more challenging areas. Some people with LD may be able to communicate very well, even if they struggle to understand all of what is communicated to them but many will have an associated speech and language problem.

The term intellectual disability, or ID, is used rather than LD, to signify that the condition affects intellect and is lifelong. This fact is important – the individual will need support, depending on their level of disability, for the whole of their life. There are many causes of LD, all involve the developing brain – genetic or chromosomal conditions, intrauterine infections, perinatal hypoxic brain injury to name but a few. After the brain has developed, such an insult is described as an acquired brain injury.

The level of disability may be mild, moderate or severe, depending on IQ, although this is rarely formally calculated and actually doesn’t really add much. Support and care should be tailored to an individual’s needs rather than their IQ.

The term PMLD is used to describe individuals with Profound and Multiple Learning Disability. These patients may have fairly complex comorbidities alongside severe learning disabilities. They can affect not only their ability to learn and process information, but also their ability to communicate and to be independent.

Learning Difficulty

A learning difficulty is very different to a learning disability, and is far more common. Things like ADHD, dyspraxia or dyslexia are all examples of a learning difficulty. They all make learning more difficult, but don’t affect overall intellect or IQ.

Autism

Autism, or an autistic spectrum condition (ASC), is not itself a learning disability, although about one-third of people with ASC will also have LD. The National Autistic Society (UK) describes autism as “a lifelong developmental disability which affects how people communicate and interact with the world”. There are lots of different elements, each of which may be present to a greater or lesser extent within one individual, so each autistic person is different from the next. The autistic spectrum is not a linear thing, with someone being more or less autistic. “High functioning” or “low functioning” are not particularly appropriate terms either. It’s more helpful to think about how someone’s autistic features affect them. The most common features include social communication difficulties, sensory processing disorder and restrictive or repetitive movements.

Social communication difficulties include challenges in interpreting body language or facial expression, and reading hidden meaning into words or phrases, particularly when metaphors are used. Sensory processing difficulties involve the body misinterpreting sensations. A light touch may be perceived as very painful whilst a deeper touch may be more comforting. Bright lights or certain noises could be very distressing. Restrictive or repetitive movements are often comforting, or theymay distract from upsetting or uncomfortable situations.

ASC was more commonly known as ASD, or autistic spectrum disorder. The move to calling it a condition, instead, is an attempt to remove unnecessary negativity. ASC encompasses many other conditions such as that previously known as Asperger syndrome. This name is no longer preferred – Hans Asperger has a troubling history. It was used to describe people with normal or even high intelligence, coupled with autistic features. Other conditions included under the ASC umbrella include PDD (pervasive developmental disorder) and PDA (pathological demand avoidance).

Person First vs Identity First Language

We use person-first language for many conditions. Someone with asthma is not defined by their asthma but has a whole identity of their own, so they are described as someone with asthma. Someone with Down syndrome may share certain physical features with someone else with Down syndrome, but they have their own identity and character which is very different from that of others with Down syndrome, so they are described as a person with Down syndrome, not a Down’s person or, even worse, a Downs.

Child with learning disability

Many autistic people feel that their autistic features form part of their identity – that they would be a very different person if they did not have autism, so they describe themselves as autistic, rather than a person with autism. You can read more about person first vs identity first language here.

And if you can’t remember what to say when?

Ask! It’s always better to ask someone how they would prefer to be described than to guess. All people. whether they have LD, a learning difficulty or ASC are individuals and will have their own preferences, likes and dislikes. Getting the language right can be a great start, but being honest and open when you’re not sure is a very close second.

Supraglottic airway devices

Cite this article as:
Jessica Rogers. Supraglottic airway devices, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.32780

Endotracheal intubation (ETI) in children is thankfully rare and our first pass success rate could definitely do with some improvement.

It is difficult to compare the efficacy of various advanced airway techniques in children. There are ethical implications, of course, but also marked differences in ages and in the potential aetiology of the arrest. There is often time to talk with the intensive care team and make a plan based on the best airway for that given situation. Similarly, the operating theatre, home of many an airway trial, is a very different environment. We’ll look at advanced airways in cases of cardiac/respiratory arrest. Be mindful there will always be a difference in timing and skill set between out-of-hospital cardiac arrest (OHCA) to in-hospital cardiac arrest (IHCA).

There are few actual studies comparing the advanced airway treatments used during cardiac arrest management in children. There are even fewer studies surrounding the use of supraglottic airways (SGAs) in children. Most of these are observational studies.

ILCOR currently recommends endotracheal intubation (ETI) as the ideal way to manage an airway during resuscitation. They also state that supraglottic airways are an acceptable alternative to the standard bag-valve-mask ventilation (BVM). There are very few clinical trials in children on which these recommendations are based (and certainly none of rigorous design in the last 20 years). Due to this lack of evidence, they commissioned a study as part of the Paediatric Life Support Task Force.

Lavonas EJ, Ohshimo S, Nation K, Van de Voorde P, Nuthall G, Maconochie I, Torabi N, Morrison LJ, DeCaen A, Atkins D, Bingham R. Advanced airway interventions for paediatric cardiac arrest: a systematic review and meta-analysis. Resuscitation. 2019 May 1;138:114-28.


Lavonas et al. (2018) carried out a systematic review and meta-analysis on the use of advanced airway interventions (ETI vs SGA), compared to BVM alone, for resuscitation of children in cardiac arrest. Only 14 studies were identified. 12 of these were suitable for inclusion in the meta-analysis. They were mostly focused on OHCA. There was a high risk of bias and so the overall quality of evidence was in the low to very low range. The key outcome measure was survival to hospital discharge with a good neurological outcome. The analysis suggested that both ETI and SGA were not superior to BVM.

So now, let’s cover some of the literature on the use of supraglottic airway devices. These are mostly based on studies in adults.

The ideal ventilatory device

  • …is easy to set up and insert by anyone so it doesn’t matter what the make-up of the team is
  • …is quick to set up and quick to insert. This reduces the time taken away from other important tasks and allowing that all-important ‘bandwidth’
  • …allows for minimal risk of aspiration
  • …provides a tight seal to allow for high airway pressures if needed
  • …is sturdy enough that the patient cannot bite through it and cut off their own oxygen supply
  • …provides an option to decompress the stomach via the same device
  • …has minimal risk of accidental misplacement or loss of airway once inserted

If this sounds too good to be true, it is. No one device combines all of these essential features. This leaves us deciding which is most suited to the patient in front of us.

sizing chart for supraglottic airway devices
Rather than tape the i-gel to the cheek it is often easier to use traditional tube ties to secure the airway

It is very difficult to compare SGAs with endotracheal tubes (ETT). An ETT is a ‘definitive airway’ that provides protection against aspiration. This does not mean that SGAs are a ‘lesser’ option. An SGA is still an ‘advanced airway’ and more effective than using a bag-valve-mask technique. It is important to remember that advanced airways have their pros and cons. Whilst they may improve a patients’ likelihood of survival with good neurological recovery, there can be associated complications.

Table showing advantages and challenges of bag-valve mask compared to supraglottic airway devices

The science behind supraglottic airways

So what does the science say? There are few trials in children but there have been several seminal papers released on advanced airway techniques in adults. Whilst not directly related to children, they do raise some interesting points of comparison between devices.

Benger JR, Kirby K, Black S, Brett SJ, Clout M, Lazaroo MJ, Nolan JP, Reeves BC, Robinson M, Scott LJ, Smartt H. Effect of a strategy of a supraglottic airway device vs tracheal intubation during out-of-hospital cardiac arrest on functional outcome: the AIRWAYS-2 randomized clinical trial. Jama. 2018 Aug 28;320(8):779-91.

This multicentre, cluster randomised trial, was conducted by paramedics across four ambulance services in England. It compared supraglottic devices to tracheal intubation in adult patients with OHCA looking at their effect on functional neurological outcome. This study only included patients over the age of 18. They found no statistically significant difference in 30-day outcome (the primary outcome measure) or in survival status, rate of regurgitation, aspiration or ROSC (secondary outcomes). There was a statistically significant difference when it came to initial ventilation success. Supraglottic airways required less attempts, but their use also lead to an increased likelihood of the loss of an established airway

So what does this mean? The main concern that gets bandied around when discussing SGAs is the higher risk of aspiration. If there was no difference in risk, would that change your mind?

Jabre P, Penaloza A, Pinero D, Duchateau FX, Borron SW, Javaudin F, Richard O, De Longueville D, Bouilleau G, Devaud ML, Heidet M. Effect of bag-mask ventilation vs endotracheal intubation during cardiopulmonary resuscitation on neurological outcome after out-of-hospital cardiorespiratory arrest: a randomized clinical trial. Jama. 2018 Feb 27;319(8):779-87.

This was a multicentre, randomised clinical trial in France and Belgium looking at OHCA over a 2-year period. Again this study enrolled adults over 18 years old. They looked at the non-inferiority of BVM vs ETI with regard to survival with favourable neurological outcome at 28 days. Responding teams consisted of an ambulance driver, a nurse and an emergency physician. The rate of ROSC was significantly greater in the ETI group but there was no difference in survival to discharge. Overall, the study results were inconclusive either way.

If survival to discharge is unaffected, should we all be spending time training and maintaining competency or should endotracheal intubation be kept only for those who practice it regularly in their day job?

Wang HE, Schmicker RH, Daya MR, Stephens SW, Idris AH, Carlson JN, Colella MR, Herren H, Hansen M, Richmond NJ, Puyana JC. Effect of a strategy of initial laryngeal tube insertion vs endotracheal intubation on 72-hour survival in adults with out-of-hospital cardiac arrest: a randomized clinical trial. Jama. 2018 Aug 28;320(8):769-78.


This cluster-randomised, multiple crossover design was carried out by paramedics/EMS across 27 agencies. It looked at adult patients receiving either laryngeal tube or endotracheal intubation and survival at 72 hours. Again, they only included adults over 18 with non-traumatic cardiac arrest. They found a ‘modest but significant’ improved survival rate in the LMA group and this correlated with a higher rate of ROSC. Unfortunately, this trial included a lot of potential bias and the study design may not be robust enough to back up the level of difference.

Could the survival rate be explained by first-pass success and less time spent ‘off the chest’ during initial resuscitation? No study is perfect. Always critically appraise for yourself and check if study results are applicable to your local population and own practice before changing anything.

More questions than answers

After reading the science (and please do go take a deeper dive into those papers and appraise them for yourselves), let’s tackle some common queries.

SGAs are so easy you can just whack it in and done!

No. Getting the SGA in is only the first step. Even then, you need to be sure you have picked the appropriate size and assessed for leaks. SGAs are much more likely to become dislodged and lead to an unexpected loss of airway. Generally, we are not as meticulous about securing them as we should be. Ideally, use a tube tie to secure it in place and monitor the position (in relation to the teeth). Some SGAs have a black line on the shaft that should line up with the incisors (beware this may only be present in the larger sizes). Just like ETTs, they require you to check for adequate ventilation via auscultation, ETCO2 and listening for an obvious leak.


It’s okay if there is a leak at the start as the gel will mould as it heats up

No. There is no evidence to suggest the shape of i-gels (this is usually the model clinicians are referring to in this instance) will mould to the inside of the larynx. Researchers have tried heating up the material and there is no statistical change in the leak. If you do have a significant leak, consider re-positioning, swapping out for a different size or using a different model. You may find a small leak that disappears over time. Over time, the airway jiggles around and sits better.


You should always decompress the stomach when you put in an LMA

Possibly. This is not routinely found in guidelines as it is seen as more of a fine-tuning procedure. It can take time and resources away from other critical tasks (such as chest compressions, IV access, optimal ventilation) but if you have the resources to do so, without affecting the basics of good resuscitation care, then it is a good option if ventilation is not as optimal as it could be. This is particularly important in children. We know that they are at higher risk of diaphragmatic splinting from overzealous ventilation so the early insertion of a nasogastric tube can really improve things.

Laryngoscopy should be used before every SGA insertion

Possibly. Some places have started to mandate laryngoscopy because they have missed obstruction by a foreign body, or to allow better suctioning and improve the passage for insertion. There is an argument that the SGA may sit better if inserted with the aid of a laryngoscope as, in a number of cases, it hasn’t been inserted deeply enough. Laryngoscopy is a complex skill, that takes regular practice and comes with its own challenges (damage to mouth/teeth, additional time taken, higher skill set needed).

Once inserted, SGAs can be used alongside continuous chest compressions

Possibly. This really needs to be considered on a case-by-case basis. SGAs are an advanced airway and can be used with continuous chest compressions to increase cerebral perfusion pressures. It is up to the individual clinician to monitor and decide if the ventilatory support they are giving is adequate during active compressions. In cases where the arrest is secondary to hypoxia (as in many paediatric arrests) it may be easier, and more useful, to continue with a 30:2 or 15:2 ratio to ensure good tidal volumes are reaching the lung. Some studies have shown little difference comparing the 30:2 approach to continuous ventilation.

Troubleshooting

This is the same in both SGAs and ETTs.

  • Patient issues – vomit, secretions, bronchospasm, position, change in intrathoracic / intrabdominal pressures, and in SGAs there is a risk the epiglottis has moved and is covering the opening of the device
  • Device issues – position, size, biting/kinking of an ETT
  • Equipment issues – ventilator settings, connections, oxygen supply

Remember, if you are really struggling, take a second to consider if you might be in a “can’t intubate, can’t ventilate” type of situation. Check out this article, which takes a closer look at this rare scenario.

The bottom line is, we just do not know what is best in our paediatric population. Due to lack of scientific evidence, we often have to rely more on operator skill, available equipment and previous experience.

Selected resources on supraglottic airways

Check out the ‘Roadside to Resus: Supraglottic airways’ podcast from The Resus Room

PHEMcast also have podcasts on ‘The LMA’ and ‘The collapsed infant’

Nasal injuries

Cite this article as:
Ragavan Navaratnam. Nasal injuries, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.33108

13-year-old Freya (she/her) has been tackled in rugby and fell onto her nose. It bled initially and her mother has brought her as it is really swollen and looks wonky. “Is it broken, doctor?”

Nasal injuries in children are frequently encountered in paediatric emergency departments. One third of all nasal fractures occur in children, accounting for 60% of all facial fractures seen in the emergency department. The nose is the second most commonly injured site on a child and is more commonly seen in males. The most common locations of injury to the nose are: the nasal tip, the dorsum, and nasal root region with only 32% of injuries involving the nasal skeleton.

Nasal fractures are more common after three years of age, and unlikely below the first year of life, as the nasal bones are hardly ossified. But the bones aren’t the only thing you need to look out for; nasal obstruction and septal haematomas are important to identify and treat urgently.

History

Nasal trauma in children commonly arises following: falls, contact sports and automobile crashes, typically involving bicyclists or pedestrians. Non accidental injury also must be considered as a potential mechanism.

Important aspects of history should include:

  • mechanism
  • if there was any deformity immediately
  • new-onset nasal obstruction.
  • bleeding
  • anosmia

It is also important to note any previous nasal injury or pre-existing deformity.

Examination

Children with facial trauma are usually apprehensive, so any examination may be limited due lack of cooperation.  Pain relief and play therapy will go a long way. Bleeding and swelling often accompany injuries and can limit a thorough examination. Applying local pressure may be necessary prior to starting a formal examination.

Inspection

The examination should start with inspection of the nose and the surrounding facial structures.  It is important to note:

  • Periorbital bruising in the absence of other orbital findings is suggestive of a nasal fracture.
  • External nasal deformity, epistaxis, oedema, and bruising is highly suggestive of a septal injury. Any deformity more be masked by swelling.
  • A flattened, broad nose with an increase of the inner canthal distance and associated with vertical orbital displacement is suggestive of a naso-orbito-ethmoid fracture. The normal mean inner canthal distance is 16 mm at birth and increases to 25 to 27 mm in the mature female and male face, respectively, although there is ethnic variation.

The intranasal cavity should be assessed with a nasal speculum to exclude a septal injury. A septal haematoma can arise without the presence of any external signs. The septum should be examined for the presence of fractures, displacement, lacerations, discoloration, and abnormal swelling. Don’t forget that the nasal septum may be acutely or chronically deviated so you may need to ask about this in the history. Sometimes looking at an old photo helps.

The key findings suggestive of septal hematoma include:

  • An asymmetrical septum with a blue/red discolouration
  • Swelling of the nasal mucosa that obstructs the nasal passage
  • The size of the mass does not change with the application of topical vasoconstricting agents.

Most times a septal haematoma looks like a blueberry up the nostril.

Palpation

After inspection, the nasal bones should be palpated for tenderness, deformity, mobility and  crepitus, although realistically poking a bruised nose may be too painful to tolerate. It is important to note:

  • Tenderness over the frontal sinus may indicate frontal sinus fractures.
  • Tenderness to palpation of the tip of the nose may be suggestive of a septal hematoma
  • Tenderness and instability on palpation of the anterior nasal spine from beneath the upper lip may indicate a significant septal injury.
  • Malocclusion is suggestive of a midfacial Le Fort fracture.

It is important to exclude an associated skull fracture which may be indicated by the presence of clear fluid in the nasal cavity. A fracture through the cribriform plate can result in a CSF leak. In an ideal world you can test for beta-2-transferrin (present only in CSF, perilymph, and aqueous humor), but I have yet to hear of EDs which offer this.

The signs and symptoms of nasal septal injury may evolve during the 24 to 72 hours after injury. Children with nasal trauma should be safety-netted to return if anything changes after they go home.

Investigations

A history and clinical examination should more than suffice in guiding the management of children with nasal injuries. In simple nasal injuries, imaging adds very little. Plain radiographs are of very limited benefit as the majority of the nose in children in cartilaginous and therefore poorly visualised on x-rays.

In injuries associated with more worrying features i.e. CSF leak or malocclusion, CT imaging is the modality of choice due to the risk of a Le Fort fracture or a base of skull injury.

Classification

A number of classifications systems have been proposed for nasal injuries. The first and most widely quoted was based on the pattern of injury sustained and the direction of force applied. More recently, a classification system based on pathological findings was proposed. This second classification system has been adapted, to incorporate clinical findings as opposed to the  pathologic patterning of injury.

Table showing 6 types of nasal injury
Classification of nasal injuries

A complicated fracture is classified as a Type II to Type IV  fracture with CSF rhinorrhea, airway obstruction, septal haematoma, crush injury, numbness, severe displacement or midface involvement.

Treatment

The management of nasal trauma in infants and children depends upon their age, the degree of nasal obstruction, and associated injuries. Children with nasal trauma should maintain upright posture to prevent the formation and facilitate the resolution of any associated oedema and hematoma. Patients who have no symptoms, minimal swelling, and no septal deviation or hematoma do not need specific follow-up.  Ensure adequate analgesia is given and appropriate advice when to return (on-going bleeding, evolving nasal obstruction, worsening pain).

Epistaxis – Most acute nasal bleeds respond to direct pressure over the anterior nose. Encourage the child to pinch their own nose but if they are unable, asking a parent to perform this has the added benefit of helping reduce the patient’s anxiety. During simple compression, position the child upright and sit them forward. This will help avoid possible aspiration of blood. Distraction and play therapy during compression are useful. In the majority, bleeding is controlled within 5 – 10 minutes.

If direct pressure fails to control bleeding, a number of management options are available but are rarely needed in the emergency department. These include:

  • Nasal packing. Tamponading the bleeding point can be very effective but can be very distressing to children. Sedation is often required to facilitate the procedure. It is advisable to seek an ENT opinion before packing a child’s nose, especially if this is traumatic.
  • Topical vasoconstrictors. These can be very effective but are not without risks. They are most commonly used in the theatres by the ENT surgeons. Options include topical phenylephrine or oxymetazoline. After application of a vasoconstrictor, direct pressure should be applied for at least 5 minutes before reassessing for further bleeding.
  • Tranexamic acid.
  • Cautery. In the emergency department, chemical cautery is commonly used, predominately in the adult population. Typically 75% silver nitrate is used to arrest bleeding. Cauterisation is undertaken around the bleeding point. Cautery works most effectively on dry areas so direct cautery of a bleeding point is often unsuccessful until the surrounding area has been treated. Care must be taken to avoid the skin and it is paramount the child is calm and cooperative, which may necessitate sedation. Make sure you don’t cauterise both sides of the septum.

Children presenting with possible fractures or obvious deformity should be reviewed by an ENT specialist; generally this can wait a few days. In the very young, injuries resulting in nasal obstruction should be referred urgently as young children are obligate nasal breathers.

As mentioned previously, swelling and oedema can make an accurate assessment difficult. As such, an immediate referral of a child with a broken nose but no features of airway compromise may not be needed. Children can be referred to an outpatient clinic for review but should be seen within in five to seven days. Short delays in definitive management of up to a week have been shown to have little impact on long term outcome. However, delays over seven days can make reduction of fractures more challenging, largely due to the active growth centres in a child’s nasal bones promote rapid healing.

Potential complications of nasal injuries

A number of potential complications can arise as a result of nasal trauma, particularly if there is a fracture. The most common complication is obstruction. This is often due to either soft tissue swelling or a deviation of the septum following an injury. Persistent obstruction following an injury is more likely due to septal deviation and therefore requires assessment by an ENT surgeon.   

Poor cosmesis following healing is a common problem reported by patients and is a valid concern for many parents. Recent work has shown that those sustaining fractures at a younger age compared to those that had none, had no differences in functional outcomes but were likely to suffer with deviations of the septum, bumps or humps in the nasal bridge and saddle formation.  Ensuring a timely referral to a surgeon may help reduce the incidence of a poor aesthetic result for the patient.

A septal haematoma that is not promptly dealt with can result in a septal abscess or necrosis (and a future flat nose). Though infection can remain localised, cases of intracranial infection via tracking through the cavernous sinus have been reported. Cavernous sinus thrombosis is also a recognised complication of septal haematomas. Damage to the cribiform plate with a resulting CSF leak is also a potential avenue for intra-cranial infection.

Rarer complications but still clinically important include:

  • Lacrimal duct obstruction
  • Maxillary hypoplasia
  • Naso-oral fistula
  • Anosmia. If this occurs following trauma, it very rarely returns.

Take homes

A clever history and examination are key.

Ensure you examine the inside of the nose especially for a septal haematoma

Adequate analgesia and distraction will make examination much easier

Radiological investigations have little use in simple injuries.

Direct pressure for at least 10 minutes should stop most cases of epistaxis.

Make sure, if referring to clinic, the child is seen within a week.

You have examined Freya and she has no signs of obstruction, no septal haematoma and her bleeding as stopped. She does seem to have a deviated septum however, so you discharge her with advice for simple analgesia, safety-netted and referred her for rapid access ENT clinic within seven days.

References

Baek HJ, Kim DW, Ryu JH, Lee YJ. Identification of Nasal Bone Fractures on Conventional Radiography and Facial CT: Comparison of the Diagnostic Accuracy in Different Imaging Modalities and Analysis of Interobserver Reliability. Iran J Radio. 2013 Sep; 10(3): 140–147.

Beck R, Sorge M, Schneider A, Dietz A. Current approaches to epistaxis treatment in primary and secondary care. Dtsch Arztebl Int. 2018 Jan; 115(1-2): 12–22

Béquignon E, Teissier N, Gauthier A, Brugel L, De Kermadec H, Coste A, Prulière-Escabasse V. Emergency Department care of childhood epistaxis. Emerg Med J. 2017;34(8):543

Burnius M, Perlin D Pediatric ear, nose, and throat emergencies. Pediatr Clin North Am. 2006;53(2):195

Caglar B, Serin S, Akay S, Yilmaz G, Torun A, Adibelli ZH, Parlak I. The accuracy of bedside USG in the diagnosis of nasal fractures. Am J Emerg Med 2017 Nov;35(11):1653-1656.

Calder N, Kang S, Fraser L, Kunanandam T, Montgomery J, Kubba. A double-blind randomized controlled trial of management of recurrent nosebleeds in children. Otolaryngol Head Neck Surg. 2009;140(5):670

Elden LM, Potsic WP. Otolaryngology trauma. In: Textbook of Pediatric Emergency Medicine, 5th, Fleisher GR, Ludwig S, Henretig FM (Eds), Lippincott Williams & Wilkins, Philadelphia 2006. p.1663.

Hester TO Campbell JP. Diagnosis and management of nasal trauma for primary care physicians. J Ky Med Asoc. 199795(9):386

Higuera S, Lee E I, Cole P, Hollier L H, Jr, Stal S. Nasal trauma and the deviated nose. Plast Reconstr Surg. 2007;120(7, Suppl 2):64S–75S

Hoppe IC, Kordahi AM, Paik AM, Lee ES, Granick MS (2014) Age and sex-related differences in 431 pediatric facial fractures at a level 1 trauma center. J Craniomaxillofac Surg 42(7):1408–1411

Joseph J, Martinez-Devesa P, Bellorini J, Burton MJ. Tranexamic acid to help treate nosebleeds. Cochrane review. 2018

Lkas Anschuetz B, KaiserN, Dubach P, Caversaccio M lun nasal trauma in children:a frequent diagnostic challenge. Euro Arch Oto-Rhin-Larng.2019. 276; :85-91

Lopez MA, Liu JH, Hartley BE, Myer CM. Septal hematoma and abscess after nasal trauma. Clin Pediatr (Phila). 2000;39(10):609

Precious DS, Delaire J, Hoffman CD. The effects of nasomaxillary injury on future facial growth. Oral Surg Oral Med Oral Pathol. 1988; 66:525-530.

Puricelli MD, Zitsch RP. Septal Hematoma Following Nasal Trauma. J Emerg Med. 2016 Jan;50(1):121-2.

Rohrich RJ, Adams WPJr, Nasal fracture management: minimizing secondary nasal deformities, Plast. Reconstr. Surg. 2000, 266-273

Schlosser RJ, Bolger WE. Nasal cerebrospinal fluid leaks: critical review and surgical considerations.Laryngoscope. 2004;114(2):255

Stucker FJ Jr, Bryarly RC, Shickley WW. Management o nasal trauma in children. Arch Oolaryngol. 1984: 110 (3): 90

Thomson CJ, Berkowitz RG. Extradural frontal abscess complicating nasal septal abscess in a child. Int J Pediatr Otorhinolaryngol. 1998;45(2):183

Wu KH, Tsai FJ, Li TC, Tsai CH, Peng CT, Wang TR. Normal values of inner canthal distance, interpupillary distance and palpebral fissure length in normal Chinese children in Taiwan. Acta Paediatr Taiwan. 2000;41(1):22. 

Yoon HY, Han DG. Delayed Reduction of Nasal Bone Fractures Arch Craniofac Surg. 2016 Jun; 17(2): 51–55

Croup

Cite this article as:
Laura Riddick. Croup, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.32637

It’s 0200 hours in the Emergency Department and you hear a seal …

As children have returned to school we have seen more croup through the ED so it’s time to refresh your memories!

What is it?

Viral laryngotracheobronchitis. It is essentially inflammation around the main large breathing structures and caused usually by parainfluenza 1 + 3. Other respiratory viruses including SARS-CoV-2 and RSV may also be involved. This inflammation causes a tell-tale cough and noisy breathing due to the obstruction to flow. There may be signs of increased work of breathing too such as sub-costal recession or a tracheal tug. They are generally quite well and are running around the waiting room!

Who gets it?

A lot of children – roughly 2-3% of all children per year! These kids are usually between six months and four years of age, and occurs at the beginning of autumn, though this spring we are seeing a lot of cases. Children with croup may present with a preceding coryza-like illness and a low-grade fever. This then develops into a barking “seal-like” cough and, for some reason, always seems worse at night. Boys are more commonly affected than girls, and some children seem to get it yearly.

How do we treat it?

This depends on your assessment of the child. Croup is a self-limiting viral illness and treatment tends to look to short term reduction in the inflammation to improve the work of breathing. Historically clinicians have used Westley scoring system to score croup and assess their severity before giving medication.

Westley Croup scxore
Westley Croup Score

In children who look unwell, it is important to not upset them by avoiding unnecessary interventions such as excessive handling or performing an ENT exam.

Steroids

If the child is able to take the medication, dexamethasone or prednisolone should be given to all cases of croup where any stridor or increased effort in breathing is present.

Dexamethasone appears to be more efficacious than prednisolone. It has an onset of action within 1 hour (30 minutes – 4 hours) and has a half-life of up to 36-72 hours (Schimmer 2005). There has been debate overdosing with doses of 0.15mg/kg, 0.3mg/kg and 0.6mg/kg of dexamethasone. Ultimately, 0.15mg/kg not inferior to 0.6mg/kg. At the time of writing both NICE and the BNFc recommend 0.15mg/kg as the initial dose of dexamethasone. If there are concerns about re-occurrence patients are occasionally sent home with an additional dose to be taken 12 hours later.

Prednisolone tends to be favoured in the primary care setting, at a dose of 1mg/kg with two additional daily doses. There appears to be no significant clinical difference between the two different steroids in terms of the need for additional treatment or length of stay. Dexamethasone was associated with a reduction in re-attendances, which may be due to the shorter half-life of Prednisolone (Gates 2018, Schimmer 2005)

Nebulised budesonide (2mg stat dose) is reserved for children who cannot take the dose. This may be because it was spat ou tor because they are working too hard to breathe. A Cochrane review in 2018 shows that budesonide is not superior to dexamethasone, with Westley Croup scores better in the dexamethasone group at 6 and 12 hours compared to budesonide. A combination of treatment does not appear to lead to additional benefit (Gates 2018)

Adrenaline/epinephrine

In severe cases, when the child has features of severe work of breathing, including significant recession, hypoxia or tiring, nebulised adrenaline has been used (0.4-0.5ml/kg, maximum 5ml of 1:1000). Adrenaline provides short term relief from respiratory distress and can be a bridge to getting steroids on board. The effects are short-acting and wear off after a couple of hours. It can be repeated every 30 minutes, although if you need repeat doses, anaesthetics and senior colleagues should be involved in this patients’ care.

How do we not treat it?

In the olden days parents tried treating croup at home with steam inhalation (not effective). In hospitals, humidified oxygen has also been tried though this has not been proven to be effective either (Moore 2007). Heliox (oxygen and helium combined) has also been looked at as it may improve airflow. The evidence is limited and safety and efficacy remain questionable (More, 2018). There is no evidence that salbutamol works in croup.

They sound better, what’s next?

If they are well and the stridor has resolved, patients can be discharged home with safety-netting advice. The effects of dexamethasone should last as croup itself is usually limited to 2-3 days of symptoms. Parents need to be aware that some symptoms of respiratory distress can return, usually the following night.

Patients may require a prolonged period of observation if:

  • stridor is still present at rest, or there is increased work of breathing
  • the child is very young (<3 months)
  • an adrenaline nebuliser had to be given
  • there is a past history of severe croup
  • there is a history of upper airway problems (i.e. laryngomalacia or subglottic stenosis)
  • concerns about the child returning (i.e. long-distance, social concerns)

When is it not croup?

  • Epiglottitis – a rare condition thanks to the HiB vaccine. A child would present with sudden onset, fever, drooling and looks unwell holding the head back and neck extended. This is a medical emergency and keeping the patient calm is paramount.
  • Tracheitis– thankfully also rare. It presents with the child acutely unwell after a prolonged course similar to Croup.
  • Anaphylaxis/allergy – this may be accompanied with angioedema, rash and wheeze, and requires swift treatment with IM adrenaline
  • Quinsy/retropharyngeal abscess
  • Foreign body – Usually the history would help suggest this, with a sudden onset history in a well-child.

COVID and croup

Most children admitted into hospital are now swabbed for COVID. This can provide a challenge – balancing upsetting the child (and making the upper airway obstruction worse) and performing an invasive swab. It is sensible not to swab the child whilst there is still concern about acute stridor and work of breathing..

There have been some case studies to suggest a small cohort of patients with croup who were SARS-CoV-2 positive are less responsive to the usual treatment (Venn 2020). These cases may need prolonged admission due to lack of response and the need for additional supportive therapy.

Selected references

  1. Al-Mutairi B, Kirk V. Bacterial tracheitis in children: Approach to diagnosis and treatment. Paediatr Child Health. 2004;9(1):25-30. doi:10.1093/pch/9.1.25
  2. Garbutt JM, Conlon B, Sterkel R, et al. The comparative effectiveness of prednisolone and dexamethasone for children with croup: a community-based randomized trial.  Clin Pediatr (Phila). 2013;52(11):1014–1021.
  3. Gates  A, Gates  M, Vandermeer  B, Johnson  C, Hartling  L, Johnson  DW, Klassen  TP. Glucocorticoids for croup in children. Cochrane Database of Systematic Reviews 2018, Issue 8. Art. No.: CD001955. DOI: 10.1002/14651858.CD001955.pub4. Accessed 28 April 2021
  4. Moore M, Little P. Humidified air inhalation for treating croup: a systematic review and meta-analysis.  Fam Pract. 2007;24(4):295–301
  5. Moraa I, Sturman N, McGuire TM, van Driel ML. Heliox for croup in children. Cochrane Database of Systematic Reviews 2018, Issue 10. Art. No.: CD006822. DOI: 10.1002/14651858.CD006822.pub5
  6. Schimmer B P, Parker K L. Adrenocorticotropic hormone: adrenocortical steroids and their synthetic analogs: inhibitors of the synthesis and actions of adrenocortical hormones. Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edition. New York: McGraw‐Hill, 20051459–1485
  7. Smith DK, McDermott AJ, Sullivan JF. Croup: Diagnosis and Management. Am Fam Physician. 2018 May 1;97(9):575-580. PMID: 29763253.
  8. Sparrow A, Geelhoed G. Prednisolone versus dexamethasone in croup: a randomised equivalence trial. Arch Dis Child. 2006;91(7):580-583. doi:10.1136/adc.2005.089516
  9. Venn AMR, Schmidt JM, Mullan PC. A case series of pediatric croup with COVID-19 [published online ahead of print, 2020 Sep 15]. Am J Emerg Med. 2020;S0735-6757(20)30829-9. doi:10.1016/j.ajem.2020.09.034
  10. https://www.rch.org.au/clinicalguide/guideline_index/Croup_Laryngotracheobronchitis/
  11. https://cks.nice.org.uk/topics/croup/

Ultrasound Guided Peripheral Vascular Access

Cite this article as:
Trent Calcutt. Ultrasound Guided Peripheral Vascular Access, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.23253

One of my favourite things in paediatrics is the expanding role of ultrasound guided vascular access.

When I started as a paediatric registrar, I’d just finished an adult ICU term where I’d become spent a majority of time supporting provision of a vascular access service, and as part of this had become a PICC line insertion instructor. Eventually, I got to the point where I dreamt of abstract grey shapes. But then I started a paediatric job in a regional hospital where it seemed that ultrasound was used for vascular access rarely if at all. Initially, I thought there must have been something different about paediatric vascular access that I was unaware of. One day, when looking after a young lady with Rett’s who was known to be difficult to cannulate, I reached for the ultrasound. In the five years since, ultrasound has been a standard part of my practice in achieving vascular access in children, with technique adapted to fit the age of the patient.

Ultrasound-guided vascular access and paediatrics seem like such a natural partnership. The concept of a DIVA (“difficult IV access”) patient is receiving increasing interest and research. Criteria for a DIVA can include prematurity, inability to see or feel a vessel, or an episode of multiple prior attempts. These criteria would be met by a huge number of the kids we care for, in particular toddlers or the previously premature infant. 

Chonky baby arm
Spot the veins

Why is ultrasound not the first-line adjunct in these tricky kids? It’s probably multifactorial, but certainly, ultrasound is more difficult in children than adults. Its utility is varied in the NICU context and for infants under 2.5kg, although can still have a role with a modification to technique. It’s also harder to learn ultrasound in a population who are scared, angry, impatient and poorly tolerant of a prolonged period of needle-through-skin. For these reasons, I think that there is less appeal to replace the familiar (cannulating without an ultrasound), with the unfamiliar (cannulating with an ultrasound). As I’d experienced, this also leads to a culture where ultrasound is infrequently utilized, decreasing the likelihood of implementation by new or more junior staff.

Once the learning investment is made to reach a proficient level of ultrasound competency (about 20 cannulas in adults) the potential benefits are significant. Decreased time spent performing a procedure, decreased number of attempts and subsequent patient trauma, and increased cannula longevity are all achievable.

I’ve spent a lot of time thinking success optimisation in paediatric ultrasound guided cannulation, both during my own development of proficiency and then in an effort to verbalize this skill when educating others. Below are my 5 top tips to enhance your ultrasound-guided cannulation skills:

I’m hoping that some of these words may help avoid some bits of the inevitable trial and error process that comes with learning a new skill.

There is sometimes a general impression of both practical and personal inconvenience in using ultrasound for vascular access. An ultrasound may not be nearby. There is the fear of “looking silly” in front of other people, as turning on, adjusting, and then physically coordinating the use of the ultrasound may be unfamiliar. During the period of establishing proficiency, an approach to decreasing this sense of unfamiliarity is to get in the habit of bringing the ultrasound with you do a cannula. Turn on and optimize the ultrasound to view vessels, and spend a period mapping out candidates for cannulation using your non-cannulating hand. Draw on the patient with a skin pen if you want to keep track of the best sites. Then, discard the ultrasound and cannulate using whatever technique is most familiar to you, but with the added knowledge of vessel location, depth, size, and direction. If this becomes a routine and almost ritualistic process, the mental barrier created by a lack of familiarity with ultrasound settings and holding the transducer should decrease over time. It is a relatively small step from performing vascular mapping to placing a cannula under real-time ultrasound guidance.

The preparation otherwise is quite straightforward. In addition to the set up that you use for all other cannulas, you need the following four things:

  • An ultrasound with a linear array probe (the smaller the footprint and the higher the frequency, the better)
  • Sterile lubricating gel and some form of sterile barrier to cover your probe (this varies institutionally)
  • Cavilon wipe or skin prep (securement devices / dressings / tape doesn’t like to stick to ultrasound gel so will need some encouragement)
  • An extra person (one of your hands is out of action, so you need an additional person to perform the task that your non-dominant hand would normally do; this is typically stabilization of the distal limb)

The ultrasound sits on the opposite side of the bed to the operator, so as to minimize truncal movement in looking from the puncture site to screen. Aside from making sure the correct probe is selected, the only 3 settings you need to know how to adjust are depth (typically as shallow as possible), gain (similar to a ‘brightness’ setting to highlight blood-filled vessels), and a midline marker (for physical-digital landmark referencing).

As alluded to above, pre-scanning is a useful skill even in the absence of cannulating under real-time ultrasound guidance. It’s a good idea to scope out the most appropriate vessels and puncture sites prior to picking up your cannula. Essentially the objective is to place a cannula within a vessel with as few attempts as possible, as quickly as possible, with as little pain as possible, and in a site that will provide the greatest longevity. Characteristics of vessels that tend to correlate with these outcomes are:

  • long and straight stretches
  • vessel 6mm or less below the surface
  • vessels greater than 2mm in diameter
  • vessels that don’t cross a joint (provides freedom of movement and less extravasation)
  • vessels without upstream thrombosis or obstruction

Mid-forearm vessels often meet the above criteria.

The greater length of cannula able to be placed within the vessel can correlate with longevity, however larger cannula diameter may increase the phlebitis and decrease longevity. This requires consideration of the balance between length and diameter of device. Of the commonly available devices, a good balance is a blue cannula (22G). There are several specialised less widely available devices that are longer versions of small diameter cannulae (24G and 22G).

In practical terms, to find these vessels you can start in the antecubital fossa (more familiar area for most of us) and track them down, or plonk down on the forearm and pan circumferentially. Scanning in the short axis / transverse axis / cross-sectional view tends to work best in kids. To assess suitability, translate the probe up and down along a vessel to get an idea of the direction. If it’s running diagonally, rotate your probe until it’s running along the same plane as the vessel to act as a mental reminder of the angle/direction that you need to insert your cannula. Pick the specific spot on the vessel that you’d like to puncture, bearing in mind that you will be puncturing the skin millimetres back from that point. Pick the patch of the vein that is the longest, straightest, shallowest, and biggest. Have a second fallback site planned out elsewhere for if required. Lastly, make sure to track the vein proximally as far as you can to ensure that it doesn’t run into a large thrombosed/occluded/recannalizing patch of vessel.

Obscure angles make things more challenging, in my experience. Right angles and parallel lines are your friends because they assist in mental unburdening and allow you to devote energy to troubleshooting issues. As mentioned above, map the vessel prior to puncture. Part or all of a vein will often wander diagonally along its journey, so approaching from the wrong direction increases the likelihood of punching through the side of the vessel. The centre of the image corresponds to the arrow/marker along the long edge of the probe, so you have a reference point between digital (screen) and physical (skin). Use the ultrasound as a mental reminder of your plane of approach; rotate the probe until the vessel is consistently sitting in the very centre of your image as you plane up and down. In other words, the ultrasound image is perfectly perpendicular to the plane of the vessel.

Speaking of right angles, I prefer to keep the ultrasound at right angles to the surface that you’re scanning. Angling back and forth creates a loss of contact and a distorted image as the ultrasound bounces of structures and does not return to the transducer. This creates a less clear image where vessels artificially look larger. If you need to change your view, translate/glide the probe along the skin, rather than introducing angle. It can be useful to temporarily angle the transducer perpendicular to the shaft of the cannula if you lose sight of it as this will light it up more clearly.

This is a big one. Thinking of your cannulation as a two-phase puncture process is something that I find extremely helpful. Your objective is not to puncture the skin and end up inside the vessel in a single action, and in fact, attempting to do this seems decrease the likelihood of success. 

 

Puncture Phase 1

Puncture 1 is the process from skin puncture to positioning the tip of your cannula on the superficial wall of the vessel. To achieve this, align your probe to achieve a view with the vessel in the centre of the image. Puncture the skin with the cannula a few millimetres distal to the probe. This bit is painful, so do this with a decisive action so that 2-3 mm of the cannula is within the soft tissue. Increase your angle of insertion to 30-45°. Your next objective is to find the tip of the cannula. Moving your non-dominant (ultrasound) hand, translate/slide the probe towards the puncture site until a glimmering white dot becomes apparent in your image. Once you are convinced that you are viewing your cannula, you need to ensure that you are viewing the tip at all times.

The most important thing to remember is the only way to be certain that you are viewing the tip of your cannula is when the glimmering dot disappears when you move the probe 1mm proximally (away). It is frustratingly easy to think that you are viewing your cannula tip when instead you are halfway along the shaft, with the tip out the deep wall of the vessel. Maintain this view via a “walking” approach. For each 1-2mm advancement (step) of the cannula, make an equivalent proximal movement with your ultrasound probe (step). Move the ultrasound away so that you cannot see cannula tip anymore, and then advance the cannula into view. If needed, intermittently stop advancing your cannula and check your tip position as described above. I find advancing at 30-45° until you reach the vessel works well as minimal cannula is wasted on the journey there.

If you find yourself wandering off track, keep the ultrasound focused around the vessel as the centre of your image (as this is your target). Correcting if off centre is slightly counterintuitive. Move your cannulating hand away from the direction that you want to move your cannula tip (ie- moving right will move the tip left). Continue inserting until your cannula tip is sitting at 12 o’clock on top of your vessel. As you reach this point, the tip of the cannula may gently tent the roof of the vessel, turning an “O” shape into a “❤️” shape. This is a good test of correct positioning. Once you’ve reached this point, you’re ready for puncture phase 2!!

 Puncture Phase 2

Puncture 2 is the process of entering the vessel to feeding your cannula fully in. With the tip of your cannula in view and the roof of the vessel tented (❤️), continue incrementally advancing your cannula with tiny movement, walking the ultrasound forward to ensure the tip remains in view (as above). Gently decrease your angle of insertion so that the superficial wall is not tenting towards the deep wall but rather into the potential space of the proximal vessel. Eventually, your tented vessel (❤️) will suddenly encompass the cannula and return to a circular shape (O). This may be associated with a tactile pop. You can check for flashback for additional confirmation of vessel puncture, but I prefer to not take my eyes off the ultrasound screen at this point.

Continue decreasing your angle of insertion to maintain the tip of the cannula in the top 50% of the vessel (keep the sharp bevel away from the deep wall). This may eventually require you be pushing the cannula into the skin, which really requires your assistant to get out of the way. Don’t lose site of your tip! Continue to step forward; cannula then ultrasound. To check whether you are in the vessel and not in soft tissue or dragging on the vessel wall, waggle the tip of the cannula around gently (left, right, up, down). There should be absolutely no distortion of the soft tissue surrounding the vessel; completely free cannula tip movement. I tend to leave the metal stylet in until the plastic catheter is fully inserted to the hub because of greater visibility and added rigidity. This does, however, carry the risk of puncturing the back or sidewall of the vessel if you don’t keep a close eye on your cannula tip. At the very least, ensure 3-4mm of the cannula is inside the vessel lumen prior to gliding the plastic catheter off (to avoid tissuing / tearing the vessel roof). Once this is done, you’ve just successfully place a real-time ultrasound-guided cannula! Well done!

I think it’s reasonable with each healthcare interaction to measure success both in the resolution of issue (beneficence) and in minimization of harm / traumatic experience (non-maleficence). Vascular access is our commonest painful procedure, hence representing a significant potential burden of pain, anxiety, and trauma. Undertaking steps to minimize vascular access attempts, maximize speed/efficiency, and maximize cannula longevity are important considerations in the healthcare interaction. Even if we manage to achieve the elusive goal of a single puncture hospital admission, this still requires a single puncture. 

This discussion is not really directed towards addressing the specifics of analgesia and sedation but suffice to say that time permitting these should be used and optimized readily. A topical anaesthetic is valuable, although in the case of an ultrasound-guided cannula application by the operator is useful in ensuring good placement. Evidence is increasingly suggesting that topical anaesthetic is appropriate in all ages including neonates.

The power of social stories, rehearsal, music therapy, and just general distraction cannot be undervalued. There is a multitude of approaches to this. 

Unfortunately, it is not an uncommon experience to be in a situation where vascular access is required with a degree of clinical urgency. In this circumstance, oral/intranasal/topical medication may have not had time to work, and a specialist in distraction may not be readily available.

In this circumstance, I have found that playing calm and quiet music more useful than positioning a video in front of a child. Maintaining a minimum of people speaking, and using quiet calm voices is valuable. I have had some success using the ultrasound itself as a distraction modality while telling the child a story of the “doughnut that has lost its hole” (vein and cannula tip respectively) as the tip tracks toward the vessel. A variant is the “star that fell from the sky into the lake” (cannula tip and vein respectively). There are many approaches to pain reduction through distraction.

It is my sincere hope that these tips are of some practical and clinical value in your cannulating endeavours. If it makes a difference for a single child, then surely it’s worth it. Good luck!

Communicating clearly

Cite this article as:
Liz Herrieven. Communicating clearly, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.32916

The Joint Royal Colleges Ambulance Liaison Committee (JRCALC) produces guidance for ambulance services across the UK. I was thrilled to be asked to contribute to this in the form of a new chapter on patients with communication difficulties. This post expands on that guidance, which was written to support pre-hospital clinicians in providing the best possible care to their patients who face challenges with communication. This may be due to a wide variety of underlying conditions, including learning disability, autism, hearing loss, dementia and dysphasia.

Communication is vital to all that we do – from the first contact with a patient, through history taking and examination, to initiating treatment and explaining procedures. We have to do our very best to get it right. This is perhaps even more important, and more difficult, in the pre-hospital field, where stress levels are high, the environment can be unpredictable and time is short. Clinicians meeting patients for the first time need to quickly assess the situation and also win trust and gain understanding.

Communication is a two-way thing. It sounds obvious, but it becomes even more important when patients find communication difficult. Not only do we have to try our best to make ourselves understood, but we also have to try our best to understand our patient.

It’s also important to remember that communication and understanding are two very different things. Someone may be able to communicate quite well but understand very little. Conversely, someone may not be able to communicate but may have a very good understanding, including things being said about or around them. Dysphasic or dysarthric patients may appear to be unable to understand when actually their difficulty is in expressing themselves.

So, how can we improve our communication?

Minimise fear and anxiety

Communicating and understanding become more challenging when there is fear and anxiety. The first step is to keep calm and reassure the patient. The specific nature of any communication difficulty needs to be recognised quickly then addressed. Patients with a learning disability may not understand what is happening so careful explanations may help. Some autistic patients may have difficulty interpreting information verbally or non-verbally, or they may have significant sensory processing difficulties which means that loud noises, bright lights and physical touch can be distressing or even painful. Deaf patients may be able to better understand if they can see the clinician’s mouth – difficult with PPE.

Make simple adjustments

Communication might be made easier with simple changes such as speaking slowly and clearly and avoiding jargon. And give time – time for your patient to respond. For some patients, including those with Down syndrome, it can take several seconds to respond – time to receive the auditory information, decode it, understand it, formulate an answer and produce that answer as the right set of noises. We’re all busy so that seven or eight seconds can feel like an age. It’s absolutely worth the wait, though.

Adapt the environment

Can we do anything to make the environment less distracting, quieter, less stimulating? Would it be better to assess the patient in familiar surroundings rather than in the ambulance? Can noisy, scary or flashing equipment be switched off, removed or covered? If the patient has to be moved can they bring something, or someone, familiar with them?

Pay attention to non-verbal communication

Would eye contact help? It often does, but for some autistic patients it can be distressing. Some people respond well to a reassuring touch (I’m a toucher and a hugger) but others find it really uncomfortable – check before extending that hand! Do we need to support our verbal communication with gesture or sign? Pictures or symbols might help to explain what we are saying, but if we don’t have any to hand then pointing to body parts or pieces of equipment can help. We absolutely need to pay attention to our non-verbal communication, body language, posture, facial expression and so on, and also watch for non-verbal cues from our patient. Those who know our patient best might be able to help with this – how would their loved one usually let someone know they were in pain, for example? Pain is often poorly assessed and managed in people with a learning disability (LeDeR – the Learning Disability Mortality Review Programme). We often hear about people having a “high pain threshold” and whilst it’s true that pain is perceived differently by different people, we can’t assume that someone does not feel pain just because they can’t verbalise it.

Play to your patient’s communication strengths

Some patients may have particular strengths and weaknesses when it comes to communication. People with Down syndrome often find it more difficult to understand and remember auditory information, due to a variety of issues including fluctuating hearing impairment and poor short term auditory memory. They may, however, find it much easier to remember and understand information presented in a visual format. Using gesture, sign language (such as Makaton), photos or symbols (such as PECS) may support the verbal information and make things much easier for both the patient and the clinician.

Family and carers can help to identify how best to communicate with the patient but consider other resources too – is there a hospital passport that can give you some clues? These are often used to list medications and past medical history, but their real beauty is in detailing likes, dislikes, behaviours associated with pain, interventions that might be difficult to tolerate, and so on. A care pathway can also give great clinical information and guide management.

Adapt your examination

Your standard examination might need to be altered a little. Give clear warnings before touching the patient, particularly if they have any visual impairment or a sensory processing disorder. Start with those parts of the examination that are less intrusive – watching and observing position, demeanour, breathing pattern, and movements can all give a huge amount of information before you even get your stethoscope out. Distraction might be useful for some patients but for others, including those who may have had previous bad experiences, it might not work. Family and carers may know how best to support your patient through the more distressing parts of the examination and any following interventions.

LeDeR has also found that early warning scores were less likely to be calculated in people with a learning disability, and they were less likely to be acted on if abnormal. There are many likely reasons behind this, including clinicians being reluctant to cause distress to their patients. Things like blood pressure or oxygen saturation measurement can be very uncomfortable, particularly for those who may not understand what is being done or who may have sensory processing difficulties. Those patients still need to be assessed and treated appropriately. If a BP or sats, or any other part of your assessment for that matter, is likely to give important information then it should be done. There may, however, need to be some thought about how best to carry it out. Explanation, communication, visual information, distraction – what will help your patient tolerate the examination?

There is a common misconception that patients with chronic health problems always have an abnormal early warning score, so what’s the point? Any score, normal or abnormal, in a previously healthy patient or not, should be taken in context with the rest of the examination. It can be helpful to know what the patient is like (behaviour, level of alertness, comfort, interaction, early warning score) when well, to help to identify how ill they may be now. Again, family and carers can give vital information about this.

Be attuned to “soft signs”

“Soft signs” can help, too. These are things that family might notice long before health professionals. They are not specific to any particular illness or disease process, but give an indication that the patient isn’t well. For example, someone might be a little paler than usual, not want to get out of bed, not want to finish their favourite meal and not want to watch their favourite TV programme. A family member would know that these things mean their loved one is not themselves, and likely to be unwell. Healthcare professionals can learn a lot by listening out for soft signs.

Beware diagnostic overshadowing

It’s really important to watch out for diagnostic overshadowing. This happens when a patient has a pre-existing diagnosis, and any new symptoms are assumed to be down to this diagnosis. For example, an autistic person might present as being quite agitated, carrying out repetitive, stereotypical movements and it might be tempting for us to assume that this is all because they have autism. However, if we do that, we may miss the fact that they are in pain or feeling unwell. Again, we have to find out more about what our patient is like when they are well, to know how ill they may be now.

All of this boils down to making reasonable adjustments, which are required by law (Equality Act 2010). We can sum it up with the TEACH mnemonic:

Time: assessing someone with communication difficulties may take more time, but that time is absolutely worth it.

Environment: pick the best environment to assess your patient in. Keep things quiet and calm, remove distractions. Keep things familiar to the patient if you can, or let them have something familiar with them.

Assume: don’t assume anything about understanding – communication aids understanding, but someone who has difficulties with communication may still have very good understanding.

Communication: how can you best communicate with your patient? How can you help them make themselves understood? Would symbols or signs help? Pictures or gesture? Writing things down?

Help: what help does your patient need? What help do you need??

None of the interventions suggested are particularly tricky or difficult, but all have the potential to make a huge difference to our patients. For those working in UK ambulance services, the JRCALC guideline chapter will hopefully help as a prompt. For others, whether pre-hospital or not, I hope this blog helps a little.

https://www.jrcalc.org.uk

https://www.bristol.ac.uk/sps/leder/

Psychological distress in healthcare workers

Cite this article as:
Galdymar Perez and Rie Yoshida. Psychological distress in healthcare workers, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.32653

We know that healthcare workers are at a greater risk of burnout, however you chose to define it. This study takes a look at the impact of COVID on the psychological distress of those on the frontline.

Roberts T, Daniels J, Hulme W, Hirst R, Horner D, Lyttle MD, Samuel K, Graham B, Reynard C, Barrett MJ, Umana E. Psychological Distress and Trauma in Doctors Providing Frontline Care During the COVID-19 Pandemic in the United Kingdom and Ireland: A Prospective Longitudinal Survey Cohort Study.

Background

This study aimed to assess the prevalence and extent of psychological distress and trauma of doctors working in the UK and Ireland during the first wave of the COVID-19 pandemic.   

Doctors working in Emergency Medicine (EM), Anaesthetics and Intensive Care Medicine (ICM) were asked to complete online surveys at the acceleration, peak and deceleration of the COVID-19 first wave, providing an insight into their psychological well-being at different phases of the pandemic. Exposure to previous infectious disease outbreaks have shown that elevated psychological distress is associated with the development of chronic stress, depression, anxiety, physical health problems, increased sickness rates, emotional exhaustion and impaired performance at work. Given that the COVID-19 pandemic will undoubtedly have a significant impact on the mental health of healthcare workers in the UK and Ireland, this study is important to understand the extent of the pandemic’s impact in these settings. The study also looked at personal and professional factors associated with increased distress in an attempt to identify those who are most at-risk and may benefit from early intervention.  

Methods

The study was carried out using a prospective online three-part longitudinal survey administered at the acceleration, peak and deceleration of the COVID-19 first wave.  Primary outcome measures were psychological distress and trauma, measured using the General Health Questionnaire for distress and the Impact of Event Scale -Revised for trauma.  These tools have been extensively utilised across different settings and cultures. The survey was distributed to doctors working in Emergency Medicine (EM), Anaesthetics and Intensive Care Medicine (ICM) in the UK and Ireland through existing trainee research networks, faculties and Royal Colleges.   Following participation in the first survey, the subsequent surveys were emailed directly to participants.  Survey distribution dates were decided based on public health data on the number of confirmed cases and deaths in the UK and Ireland.   The following dates were used:

  • Acceleration phase UK: 18/03/2020 – 26/03/2020, Ireland: 25/03/2020 – 02/04/2020
  • Peak phase UK: 21/04/2020 – 05/05/2020, Ireland: 28/04/2020 – 12/05/2020
  • Deceleration phase UK: 03/06/2020 – 17/06/2020, Ireland: 10/06/2020 – 24/06/2020

Personal and professional characteristics relating to participants’ current role, and their preparedness and experiences during the pandemic were also collected. 

Results 

Of the estimated 34,188 eligible doctors, the response rate for the initial acceleration survey was 15.9% (n=5440).  Peak and deceleration response rates were 71·6% (n=3896) and 56·6% (n=3079) respectively. (Ed. note- Though you could argue that the peak and deceleration responses were actually 11% and 9% of all eligible doctors). Prevalence of psychological distress was highest during the acceleration phase at 44·7% then declined through peak and deceleration phases of the first wave to a level comparable to pre-pandemic levels, reflecting a degree of natural recovery. The prevalence of trauma was highest at the peak of the pandemic at 23·7%. The figures for both psychological distress and trauma were substantially higher than for the general population.  The most significant personal and professional predictors associated with distress and trauma related to familial safety; personal safety and established mental health conditions.  Whilst ethnicity was not strongly associated with distress, it was a stronger predictor of trauma (R2 = 0·03).   

Strengths

This is a large-scale longitudinal study that prospectively examined the psychological wellbeing of frontline doctors, using GHQ-12 and IES-R, validated self-report measures for assessing  distress and trauma respectively. These outcome measures have been used in previous infectious disease outbreaks. A pre-specified analysis plan was published and is available online. 

This study included responses from 5440 frontline doctors throughout the UK and Ireland, an impressive response rate given that it was undertaken in the midst of a pandemic and was achieved thanks to the collaboration of multiple Emergency Medicine and Intensive Care research networks. (TERN, PERUKI, RAFT, ITERN, TRIC)  

Due to the extent of data collected, findings from this study offer an essential insight into the mental health of frontline doctors in an infectious disease outbreak.  These can be used to inform policy-makers on the development of interventions in the current pandemic and future outbreaks.  The three phase approach means interventions can be targeted in a timely manner.    

The study identifies ethnicity as a novel, key predictor of trauma.  By including the impact of ethnicity in the study the researchers have recognised the important role that ethnicity has played in this pandemic, given the higher rates of reported mortality in ethnic minority groups.  

Limitations

The surveys were distributed in a specific time frame that was based on the number of cases in both countries as a whole without accounting for the regional variation which occurred. 

As such, the researchers recognise that the variation in regional peaks may have influenced accurate capturing of psychological distress and trauma rates. In addition, pre-pandemic levels of distress and trauma in the cohort included in the study, remain unknown. 

There was a considerable drop-out rate in responses throughout the study with a 56.6% response at the final deceleration phase.  The researchers note that there was no significant difference in either the GHQ-12 or IES-R scores between those who dropped out and those who remained in the study.  However, the reason for participants’ lack of response is unknown and these participants may have been experiencing increased distress. Alternatively, a number of those without any concerns may have felt it no longer necessary to complete the survey, therefore, exaggerating the finding of significant trauma in those who did respond.

Fracture hide and seek

Cite this article as:
Carl van Heyningen and Katie Keaney. Fracture hide and seek, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.32819

Another winters morning. You are freshly vaccinated, caffeinated and ready for another ED shift. Your first patient is a return visit. A 7 year-old who fell onto his shoulder at school a week ago. You read your colleague’s previous assessment. On examination there was no bony tenderness and the x-ray report of the right clavicle was normal. Yet today there’s a lump over the collar bone and he’s no longer using his arm normally. Has something been missed?

X-ray interpretation is a complex human enterprise vulnerable to a wide variety of errors. The extent of missed diagnoses has been estimated to be as high as 15-20% 1,2.

There are two principle types of error:

  • Perceptual errors – those where the abnormality is simply not seen
  • Cognitive errors – where the abnormality is seen but its significance is not appreciated

You might think that such errors can simply be avoided through education, better imaging techniques and training. Yet since the 1960’s, despite doubtless advances in technology and improvements in medical practice, the rate of radiological errors has remained almost unchanged.

So what do we do? Admit defeat? Never!

Instead, let’s journey inwards and analyse these errors, why we make them and how we can improve ourselves and our approach to avoid missing fractures in children with injuries.

Causes of error

Perceptual errors are the most common and are due to many factors including:

  • Clinician fatigue
  • Distractions from colleagues and the working environment – the extrinsic cognitive load
  • High workload
  • Satisfaction of search (spotting one abnormality then failing to look for any more)

There is a reason your friendly radiologist is sat quietly in a dark room with a cup of coffee – a world away from a noisy, busy accident and emergency department. Consider yourself and your environment when reviewing an x-ray. Just as with prescribing, respect reviewing x-rays.

Even with the best conditions, what the eye sees the brain doesn’t always spot. Consider the now infamous Invisible Gorilla experiment that earned Christopher Chabris and Dan Simons an Ig-Nobel Prize in 2004. Participants were asked to watch a video and count the number of times the ball was passed between players. What they failed to notice was the large hairy simian playing the game. The brain failed to recognise what the eyes clearly saw.

The selective attention test

Cognitive errors occur for a whole host of reasons. Some of these include:

  • Lack of knowledge (e.g. how to interpret x-ray findings, ossification centres, etc.).
  • Lack of clinical information (e.g. history or examination)
  • Faulty reasoning (e.g. fracture identified but not cause of pain)
    • True positive, misclassified
  • Complacency (e.g. fracture identified but from separate injury)
    • False positive finding
  • Satisfaction of report (e.g. reliance on radiology report discourages further analysis).
  • Satisfaction of search (e.g. finding one fracture discourages search for another).  

Then there are our own cognitive biases which may also influence our interpretation…

Anchoring bias– early focusing on one feature of the image so neglecting or misinterpreting the rest of the information

I’ve found the distal radius fracture so that is the diagnosis”. The scaphoid fracture is then missed).

Availability bias– recent experience of a diagnosis/presentation makes you more likely to diagnose the same condition

I saw a pulled elbow the other day, it looks the same”. May miss ulnar dislocation.

Confirmation bias– looking for evidence to support your hypothesis and ignoring evidence against

It looks like a simple ankle sprain, I think that X-ray must be fine”. Can miss fractured fibula.

Outcome bias– opting for the diagnosis associated with the best patient outcome/prognosis

If there is a vertebral fracture, we will have to immobilise this child. It probably isn’t that”.

Zebra retreat– history and findings are in keeping with a rare diagnosis but the diagnostician is afraid to confirm this

As Dr Cox says, if you hear hoofbeats look for horses not zebras” …sometimes it’s a zebra!

Finally, no article on medical error would be complete without reference to the good old Swiss Cheese Model. We are but one step in a sequence of events that can either prevent or lead to error. For our example case, consider the following…

Graphic showing swiss cheese model of errors
Errors were made

Can I have some examples please?

Most fractures in children are easy to spot however some may present with subtle findings, especially when they involve the epiphyseal growth plate.

Examples of where most missed fractures occur are shown below:

Common but low risk as well as rare but high risk missed fractures

Many fracture patterns are unique to children. The paediatric skeleton is more elastic, more porous, and has a relatively stronger periosteum. That makes it uniquely vulnerable to torus fractures, buckle fractures, plastic bowing and greenstick fractures. Knowing to look for such subtleties sets paediatric fracture diagnosis apart. That coupled with odd growth plates and ossification centres explains, in part, why fractures are more easily missed in children5.

There is a subtle angled fracture of the distal radius. Compare this with the normal (middle) and healing (right) – taken from Hernandez, J.A., Swischuk, L.E., Yngve, D.A. et al. The angled buckle fracture in pediatrics: a frequently missed fracture. Emergency Radiology 10, 71–75 (2003). 

A subtle angulated fracture of the proximal radius taken from Hernandez, J.A., Swischuk, L.E., Yngve, D.A. et al. The angled buckle fracture in pediatrics: a frequently missed fracture. Emergency Radiology 10, 71–75 (2003). 

Plastic bowing deformity of the left radius and ulna taken from George MP, Bixby S. Frequently Missed Fractures in Pediatric Trauma A Pictorial Review of Plain Film Radiography Radiol Clin North Am 2019 Jul57(4)843-855

Plastic deformity of the radius with upward bowing (arrows) taken from Swischuk, L.E., Hernandez, J.A. Frequently missed fractures in children (value of comparative views). Emerg Radiol 11, 22–28 (2004). 

A subtle greenstick fracture of the distal ulna taken from George MP, Bixby S. Frequently Missed Fractures in Pediatric Trauma A Pictorial Review of Plain Film Radiography Radiol Clin North Am 2019 Jul57(4)843-855

Note the upward plastic deformity of the right clavicle with the left for comparison taken from Swischuk, L.E., Hernandez, J.A. Frequently missed fractures in children (value of comparative views). Emerg Radiol 11, 22–28 (2004). 

The leftmost image shows an obvious spiral fracture. The Toddler’s fracture in the middle image is not apparent until the line of sclerosis appears with healing taken from Swischuk, L.E., Hernandez, J.A. Frequently missed fractures in children (value of comparative views). Emerg Radiol 11, 22–28 (2004). 

A Salter-Harris 1 fracture of the distal radius. Look at the widened growth plate compared with the ulna taken from Jadhav, S.P., Swischuk, L.E. Commonly missed subtle skeletal injuries in children: a pictorial review. Emerg Radiol 15, 391–398 (2008). 

We have seen how even with the benefit of the patient in front of us and the luxury of radiology reports that we are vulnerable to making mistakes. Yes, we need to first know our ischial spine from our olecranon (our arse from our elbow), but we also need to train ourselves in techniques to avoid perceptual and cognitive traps.

So how do we prevent them?

Reducing missed fractures in children

Sadly the evidence is lacking and largely focuses on the performance of radiologists. Approaches centred solely on education and training are insufficient. Slowing down strategies, group decision-making and feedback systems are, as yet, an unproven step in the right direction. Checklists, however, have a growing evidence base in improving performance despite their poor popularity.

Whether or not you are a fan of the ‘Checklist Manifesto’, less controversial are principles around workplace culture and communication. Facing up to errors, avoiding blame and frequently just talking with colleagues (the clinician, the radiographer, the radiologist, the patient) remains incredibly important.

What else?

Systems-level thinking

A growing number of healthcare trusts now implement peer learning systems. Rather than being punitive, such groups create collective opportunities to teach using diagnostic catches as well as misses. At Leicester Royal Infirmary, Education Fellow Sarah Edwards set up one such weekly group teaching session for A&E staff. It gave them the opportunity to review images with the support of a Consultant Radiologist.

Evidence also supports “double-reading” to reduce the misses. At the Royal London Hospital, we are supported by our Radiology colleagues who review all images from our paediatric emergency department within 24 hours. Furthermore, within our ED we foster a culture of learning from each other through openly sharing learning points without risk of embarrassment and most (if not all) x-rays are reviewed by two or more clinicians to share knowledge and experience.

Such principles underpin the Irish National Radiology Quality Improvement (QI) programme. Through standard setting and measuring performance they pursue a cycle of continued quality improvement.

Individual level thinking

Michael Bruno, Vice Chair for Quality and Chief of Emergency Radiology at Penn State University says “there’s a very simple fix for errors of thinking- cognitive biases.… you must force yourself to ask really open-ended questions…. what else, how else, where else could a finding be… force your mind back open again.

To be more technical, lets consider the “dual process theory of reasoning.” In radiology, automatic system 1 processes typically enable immediate pattern recognition. In contrast deliberate system 2 reasoning enables less obvious abnormalities to be detected. Normally there is a dynamic oscillation between these to forms of thinking. The lesson is not to eliminate type 1 processing, which is prone to mental shortcuts and mistakes, but instead to be aware of our own thinking with the ability to deliberately “turn on” our type 2 brain when needed.

This discipline is termed metacognition or meta-awareness. 

For those who find such talk nebulous, there a number of practical steps that come recommended from Andrew J. Degnan (Department of Radiology at Children’s Hospital of Philadelphia).

Maintain a healthy skepticism

Reflect on your diagnostic process, challenge your interpretation forensically and question yourself objectively.

Use a structure or checklist

Structured reports help radiologists. Find your own repeatable techniques and approach each x-ray systematically, including “review areas” that are often overlooked. 

Consider the clinical findings

What is your pre-test (pre-x-ray) probability? How confident were you in your clinical assessment? Is the x-ray a rule-in or rule-out? Marrying up a thorough history and examination with a careful focus on the relevant radiographic area often bears reward.

Injuries that are missed because of failure to image are typically because the injury was poorly localized or because of the presence of other injuries distracted attention from the injured part.”

Mind your environment

Are you fatigued? Have you had a break? Clearing your mind for even a moment can actually improve overall efficiency. A quiet work space. A few minutes away from distraction. These will all empower your type 2 thinking.

Mitigate, mitigate, mitigate

Mistakes happen. Telling parents about uncertainty is critical to them re-presenting if their child’s soft tissue injury or sprain is not improving. Importantly, this is not the same as forgoing responsibility. Yet if your routine practice includes quality safety netting, discussing cases with your friendly radiologist and chasing up on cases you may not prevent mistakes but you might minimize the harm that comes from them.

What happened with our case?

A repeat x-ray was done but again no fracture was evident. Yet to examine there was an un-deniable lump mid-clavicle. In view of persistent pain and continued non-use of the limb (right arm) the child was discussed with the radiologist who agreed upon ultrasound. Ultrasound confirmed early callus formation and a break in the cortex that was not visible on X-ray. The child went home in a sling for outpatient follow up.

Take home messages  

  • Missed fractures are more common in children and not necessarily subtle
  • Know what to look for and how to look for it
  • Process is important, don’t forget history and examination
  • Communicate clearly, speak frequently with your radiographer and radiologist

Selected references

1. Berner ES, Graber ML. Overconfidence as a cause of diagnostic error in medicine. Am J Med 2008;121(5 suppl):S2–S23.

George MP, Bixby S. Frequently Missed Fractures in Pediatric Trauma A Pictorial Review of Plain Film Radiography Radiol Clin North Am 2019 Jul57(4)843-855. – Images 3,5 in carousel

Hernandez, J.A., Swischuk, L.E., Yngve, D.A. et al. The angled buckle fracture in pediatrics: a frequently missed fracture. Emergency Radiology 10, 71–75 (2003) – Images 1,2 in carousel

Jadhav, S.P., Swischuk, L.E. Commonly missed subtle skeletal injuries in children: a pictorial review. Emerg Radiol 15, 391–398 (2008). – Image 8 in carousel

2. Wachter RM. Why diagnostic errors don’t get any respect: and what can be done about them. Health Aff (Millwood) 2010;29(9):1605–1610.

5. Smith J, Tse S, Barrowman N, Bilbao A, (2016). P123: Missed fractures on radiographs in a paediatric emergency department, CJEM, 18 (S1), S119-S119

Swischuk, L.E., Hernandez, J.A. Frequently missed fractures in children (value of comparative views). Emerg Radiol 11, 22–28 (2004). Images 4,6,7 in carousel

Further reading

Brady AP. Error and discrepancy in radiology: inevitable or avoidable?. Insights Imaging. 2017;8(1):171-182. 

Kim YW, Mansfield LT. Fool me twice: delayed diagnoses in radiology with emphasis on perpetuated errors. AJR Am J Roentgenol 2014;202(3):465–470.

Michael A. Bruno, Eric A. Walker, and Hani H. Abujudeh, Understanding and Confronting Our Mistakes: The Epidemiology of Error in Radiology and Strategies for Error Reduction, RadioGraphics 2015 35:6, 1668-1676 

Martino F., Barbuti D., Martino G., Cirillo M. (2012) Missed Fractures in Children. In: Romano L., Pinto A. (eds) Errors in Radiology. Springer, Milano.

Miele V., Galluzzo M., Trinci M. (2012) Missed Fractures in the Emergency Department. In: Romano L., Pinto A. (eds) Errors in Radiology. Springer, Milano.

Wang CC, Linden KL, Otero HJ. Sonographic Evaluation of Fractures in Children. Journal of Diagnostic Medical Sonography. 2017;33(3):200-207.

Challenges in cannulation

Cite this article as:
Vicki Currie. Challenges in cannulation, Don't Forget the Bubbles, 2021. Available at:
https://doi.org/10.31440/DFTB.33103

A look at paediatric cannulation. The good, the bad and the seemingly impossible.

We have all been there – coming onto a busy shift and a child who is well known for having ‘difficult’ vascular access needs a cannula.

It can be a heart sink moment when you realise that the team from the previous shift have already tried and failed. You feel your palms begin to sweat as the nursing staff tell you that access was a huge problem on the last admission. The father of the child tells you that you can have ‘just one go’.

But what really affects the chances of success of getting that tricky cannula in? Are there any modifiable factors that make it easier or harder? And how can we feel more confident in paediatric cannulation?

What is the evidence?

There are several factors that have been shown in the literature to negatively impact the success rates of paediatric cannulation:

  • Use of previous central venous access
  • Obesity
  • Attempts in the hand and lower legs
  • Non-black / non-white race
  • Poor cooperation of the child
  • Lack of confidence prior to the procedure

A recent study by Maduemem et al looked at the ‘Challenges Faced by Non- Consultant Hospital Doctors (NCHDs) in Paediatric Peripheral Intravenous Cannulation in Ireland.’ It aimed to evaluate the level of confidence of NCHD’s and looked to identify the factors that positively or negatively impacted confidence. This is a unique piece of research that is one of the first qualitative studies looking at the level of confidence in doctors in peripheral intravenous cannulation (PIVC).

Maduemem, K., Umana, E., Adedokun, C. et al. Challenges Faced by Non-consultant Hospital Doctors in Paediatric Peripheral Intravenous Cannulation in Ireland. SN Compr. Clin. Med. 2021

The team performed a cross-sectional national survey in 12 hospitals in Ireland using paper-based questionnaires. The survey captured data on the respondents’ clinical demographics (primary speciality, number of years postgraduate experience), clinical experience with PIVC (any paediatric clinical experience, number of children cannulated in preceding three months etc), the level of confidence in paediatric PIVC and potential factors influencing confidence in PIVC.

The primary outcome was the level of confidence in cannulation, measured by a five-point Likert scale assessing the overall level of confidence with ‘agree and strongly agree’ determined as a good level of confidence. Secondary outcomes were self-rated success in PIVC, previous experience and the effect of parental presence during the procedure.

The study had 202 respondents (45% response rate). The median number of years postgraduate experience for SHO level was three years (IQR 2-4) and at registrar level seven years (IQR 5-10.5). Interestingly ALL respondents had carried out paediatric cannulation in the preceding three months with 76% performing the procedure at least 10 times during the three-month time frame.  Despite 89% of respondents rating their performance as at least average, less than half (48%) of respondents reported themselves as feeling confident with the procedure.

Only 29% of respondents were reported as feeling confident in attempting PIVC that had been unsuccessful by a colleague. 37% of the cohort felt anxious when asked to perform PIVC in children, unsurprisingly with NCHD’s below registrar level feeling more anxious than their registrar counterparts.

What was driving this anxiety? More than half of the respondents (56%) stated that nursing staff and parental presence were sources of anxiety with 52% preferring to carry out this procedure without parents present.

Specific phrases that were noted by participants to have an adverse effect on confidence before the procedure were phrases which I’m sure the majority of us have heard before:

So what can we do?

Practice, practice and more practice

The study found that levels of confidence increased with seniority so encouraging junior colleagues and supporting them to perform cannulation is key. Including sessions on simulated patient arms to practice venepuncture may be a useful adjunct for clinicians with limited previous exposure.

Think before we speak

The phrases we use prior to performing a procedure can be powerful – not just the ones we say to ourselves but those we utter to colleagues. Feeding back to colleagues that phrases were unhelpful or signposting to the above study, in a polite way, might be a good way to raise awareness of the impact such phrases can have.

We all have seen the effect a ‘fresh set of eyes’ can have on that difficult cannula. So, if you are the person attempting after a colleague has already had a go, then be confident and try to start from fresh.

What about ultrasound?

Ultrasound guidance as an adjunct to PIVC has been shown to increase the success of the first attempt with good training in the use of ultrasound a big factor in first attempt success.

This is not a mandatory or even optional skill in general paediatric training in the UK. Experience is often gained from placements in PICU, ED or time with anaesthetic colleagues. Courses are becoming more frequent . If you have the opportunity or access to learn this skill from a colleague (paediatric or adult trained) it can be extremely useful.

Vein finders (infra-red lights that magically show veins through the skin) and the cold light that can often be found on the neonatal unit (used to look for evidence of pneumothorax) can be useful adjuncts too.

Are there any scores that can predict if a child’s access is going to be difficult?

The Difficult Intravenous Access (DIVA) prediction score is based upon four variables that are proportionally weighted. The variables are: vein palpability, vein visibility, age (infants score higher) and a history of prematurity. A score > 4 equates to a 50% increase in the likelihood of failure rate with first attempt.

But if a child has a high score, what next? Some difficult access pathways have been proposed with the utilisation of ultrasound, early contact with anaesthetic colleagues to help with access and consideration of midline/ PICC/ CVC in children who are particularly difficult. In practice, highlighting children early who have factors that put them at higher risk of being difficult and early escalation to senior colleagues, limiting attempts and utilisation of some of the steps mentioned can be helpful.

Keep things calm and pain free…

Optimisation of the position of the child and parents can help to not just keep the environment a calmer place but can reduce anxieties all round. The classic ‘bear hug’ position with a parent on a chair and the child chest to chest can provide not only comfort but easy access to limbs.

The use of freeze spray or anaesthetic creams on the area you are going to attempt cannulation can help to reduce pain as well as child and parental anxiety.

The use of distraction techniques can also reduce the child’s perception of pain. Singing, a YouTube video, home video on a smartphone or even bubbles can be easily done whilst attempting cannulation.

And if despite all of this you are still unsuccessful then limit yourself to a maximum number of attempts – usual practice is two to three (two attempts usually for more junior colleagues) before you ask for additional help. This ensures that there are still some veins left for that fresh set of eyes to have a look at. It also gives the child, parent and other staff helping a break from the procedure and means you don’t become super task-focused. In a situation where the child is unwell and access just needs to be attained, this is a different matter, and you will hopefully have multiple people around with lots of sets of eyes.

PIVC in children is tough, it is a skill that takes years to get right and still people who have been doing it for years can have a bad day where they just cannot get that cannula in. Keep practising, keep smiling, think about the words you use in relation to the procedure and how they can affect others and don’t forget the bubbles!

References

Bauman M, Braude D, Crandall C. Ultrasound-guidance vs. standard technique in difficult vascular access patients by ED technicians. Am J Emerg Med. 2009;27(2):135–40.

de Negri DC, Avelar AFM, Andreoni S, et al. Predisposing factors for peripheral intravenous puncture failure in children. Rev Latam Enfermagem. 2012;20(6):1072–80.

Larsen P, Eldridge D, Brinkley J, Newton D, Goff D, Hartzog T, et al. Pediatric peripheral intravenous access: does nursing experience and competence really make a difference? J Infus Nurs. 2010;33(4):226–35.

Maduemem, K., Umana, E., Adedokun, C. et al. Challenges Faced by Non-consultant Hospital Doctors in Paediatric Peripheral Intravenous Cannulation in Ireland. SN Compr. Clin. Med. 2021. https://doi.org/10.1007/s42399-021-00881-9

Nafiu OO, Burke C, Cowan A, et al. Comparing peripheral venous access between obese and normal weight children. Pediatr Anaesthesia. 2010;20:172–6.

Petroski A, Frisch A, Joseph N, Carlson JN. Predictors of difficult pediatric intravenous access in a community emergency department. J Vasc Access. 2015;16(6):521–6.

Sou V, McManus C, Mifflin N, Frost SA, Ale J, Alexandrou E. A clinical pathway for the management of difficult venous access. BMC Nurs. 2017 Nov 17;16:64. doi: 10.1186/s12912-017-0261-z.

Vinograd AM, Chen AE, Woodford AL, Fesnak S, Gaines S, Elci OU, et al. Ultrasonographic guidance to improve first-attempt success in children with predicted difficult intravenous access in the emergency department: a randomized controlled trial. Ann Emerg Med. 2019;74(1):19–27.

Yen K, Riegert A, Gorelick MH. Derivation of the DIVA score: a clinical prediction rule for the identification of children with difficult intravenous access. Pediatr Emerg Care. 2008 Mar;24(3):143-7. doi: 10.1097/PEC.0b013e3181666f32.